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ABSTRACT 

The presented approach aims to define and develop a 
probabilistic model to measure the effectiveness of 
preventive maintenance actions on equipment and thus, 
optimize maintenance plans. To do so, it is necessary to 
deal with heterogeneous data, such as experience 
feedback and experts. The Bayesian approach provides a 
theoretical framework to treat these data. A numerical 
study applied to electric power transformers is presented 
to validate the proposed approach. It results an 
evaluation of preventive maintenance effects and an 
actualized maintenance schedule. 

INTRODUCTION 

It is well known that asset management is an important 
sector in the various activities of generation, transmission 
and distribution of energy. It is important, to ensure proper 
management of assets, to have strict control on the various 
stakes involved in asset management. For instance, one 
can quote: economic stakes, security, dependability… etc. 
Our study focuses on the operational safety of power 
transformers. These systems represent significant entities 
in the power grid and can impact significantly on the 
previous stakes in case of failure. In this context and to 
ensure better management of assets, we aim to adapt the 
periods of preventive maintenance (PM) for power 
transformer’s components. 
In literature, there are several models and approaches 
dealing with the optimization of maintenance periods. 
Each method differs according to the criterion of 
optimization proposed or simply in the approach to reach 
that point. In [1] the authors propose, in order to minimize 
the costs involved by maintenance, determine a common 
interval for inspections and PM. In [2] the author proposes 
an approach based on costs induced by maintenance 
actions and the gain in production quality. The author 
concludes that the application of PM with defined 
periodicity is no longer justified when the ratio of these 
two parameters exceeds a certain threshold. Other 
approaches are based on the effect of maintenance on 
devices’ aging to optimize the maintenance periods. 
Several models have been proposed for this purpose and 
have been summarized in [3]. These models are based on 
the principle of reduction of the age, where we assume that 
maintained equipment will see its age rejuvenated after 
maintenance. Some authors like in [4, 5] use these models 
to study strategies for replacement and maintenance under 
constraints of obsolescent equipment or to simulate 

degradation [6]. 
This document is presented as follows. In the next section, 
we present the problem that we address and the 
approaches and assumptions we use. We also give the 
definition of different notations used in this study. The 
next section is devoted to the presentation of the 
mathematical model and calculation methods. In the last 
section, we take a practical case for applying the theory 
and present examples of maintenance periods reviewed. 

OBJECTIVES OF THE STUDY 

The aim of our works is to determine a better definition of 
PM periods, or at least ensure that current maintenance is 
still relevant. To redefine PM periods, we choose to base 
on the risk of failure admitted by the Decision Maker 
(DM). To achieve this, we define a mathematical model 
based on lifetime function of maintained equipments, and 
we deduce the behaviour of unmaintained equipment. In 
some ways, the approach aims at determining the effect of 
PM actions on the life of an equipment and then remove 
them to keep only the behaviour of an unmaintained 
equipment (its intrinsic lifetime). Then, starting from the 
characteristics of unmaintained equipments, we vary the 
maintenance periods to analyze the evolution of risk of 
failures. The difficulty in this approach is to get to define 
the behaviour of unmaintained equipments. Indeed, 
available information concern operated equipments, so 
they are already maintained preventively. Note that, 
information arises from the Experience feedback (EXF) of 
the maintained equipments. In order to vary the sources of 
information, we propose to combine EXF data and experts 
opinion about equipment behaviour (Bayesian approach 
provides a theoretical framework to make this calculation). 

NOTATIONS AND DEFINITIONS 

Let be a device, subject to breakdowns due to wear or 
aging. We assume that a failure occurs unexpectedly, so 
we model this by a random variable (rv) T  representing 
the instant of first failure and t  any instant. We note: 

)(tf  the lifetime density function. 

)(tF  failure time distribution associated to )(tf . 

tN  the number of PM up to time t . 

iA  the virtual age of the material thi  PM. 

it  time of thi  PM. 

tV  the virtual age at time t  (
tt NNt AttV +−= ) 
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iX  time elapsed between the thi )1( −  maintenance 

and the thi  maintenance : 1−−= iii ttX . 

iB  gain in life associated to the thi  PM. 

jα  the risk of failure associated to maintenance j . 

Lifetime density function (Weibull density 
function) 
We consider the Weibull distribution with two parameters 

as the lifetime density function ( 00 =t ): 
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such that ηβ ,  represent respectively, the shape 

parameter and scale parameter of f . On the other hand, 

the cumulative function )(tF , takes the form: 
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Virtual age model 
This model, proposed by Kijima [7], describes the age of 
an operating equipment that undergoes successive 
maintenances. The assumption in this model is that, each 
PM prolongs component’s life (or equivalently, delays the 
onset of failure), so that, the age of maintained equipment 

(called it’s virtual age) is rejuvenated at time t : tVt ≤ . 

 

Figure 1: Virtual age of a maintained equipment 

Bayesian approach 
In this study, we question power transformer experts to 
have an evaluation of the parameters (respectively β  and 

η ) that represent respectively, the average ageing of the 

equipment and its average lifecycle in addition to 
uncertainties related to their responses. 
This approach is used to provide another source of 
information and update data. Thus, in Figure 2, the 
updated (posterior) lifetime density curve is between the 
two curves issued from the EXF and experts. 

Bayes’ theorem 
Let ),,( PAΩ  a probabilistic space and let X  be the rv 

associated to a random experiment. If X  is continuous 
then we call Bayesian theorem the following relation: 

θθθ
θθθ

dfxL

fxL
xf

∫
=

)()/(

)()/(
)/(  ; 

� x   a realization of the experiment; 

� θ   the parameters that characterize the 
experiment; 

� )/( xL θ likelihood function (issued from EXF); 

� )(θf    prior density function (issued from the 

experts); 
� )/( xf θ posterior density function. 

HYPOTHESIS OF THE MODELE 

• The PMs are supposed periodic. 
• We only look at PMs occurring before first failure. 
• The transformer is a system composed of five 

subunits: the tank, overvoltage detector, in charge tap 
changer, refrigeration circuit and electrical 
components. 

• The analysis of preventive maintenance effects is 
done on each subunit independently of each other. 

• The annual operating time of a material is of 8760 
hours. 

MODELLING 

Modelling PM effects 
To model the impact of PM actions on equipment, we use 
the reduction of age model. Assume that, after each PM, 
equipment is rejuvenated to some extent. To do so, we 
implement models of Arithmetic Reduction of Age (ARA) 
so that, the equipment is rejuvenated to a proportion of 
elapsed time up to the last observed maintenance (Kijima 
type 2 [7]): 
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To determine jB  values ( ]1,0[∈jB ), we ask experts to 

evaluate, directly on scale, the gain of life due to PM. 

Each gain is associated to a quantitative value of jB :  

 
Extent of gain Gain ]1,0[∈jB  

Weak 0,1                 
Mean 0,5                
Strong 0,7                 

Table 1: Gain scale  
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Modelling experts opinion on the ageing and the 
average lifecycle 
To model the average ageing of a component using experts 

(denoted pβ ), we propose an ageing scale such that, each 

ageing intensity is associated to a value of pβ : 

Ageing intensity 
pβ  

None 1 
Weak 1,5 
Mean 2 
Strong 3 

Table 2: Ageing scale 

To estimate the scale parameter by experts: pη , we 

question the experts about the average lifetime of subunits. 

Modelling an unmaintained equipment 
Experts inform us about maintenance actions 
effectiveness, that allows us at determining the posterior 
lifetime function of unmaintained equipments (by 
exploiting the different sources of information: Experts + 
EXF). 
For the prior, we use the experts information on aging and 
average lifetime. Thus, we determine the parameters 

pp ηβ ,  that define the Weibull prior density function. 

The likelihood is obtained from the data of unmaintained 
equipments (using ARA models). The parameters ηβ ,  of 

this distribution are obtained by likelihood maximisation. 
Likelihood is of the form: 
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Here, we consider k  failures and )( kn −  censored data 

[8]. Using the Bayesian computation, we determine the 
posterior density function of unmaintained equipments. (its 
intrinsic lifetime function) 

NEW PM PERIODS 

We use in this part, the gain due to maintenance actions 
and the intrinsic behaviour of equipments, to provide, for 
each new period of PM, the effect they have on the 
probability of failure (risk of failure). This is done based 
on Kijima's model to determine the age that would have 
equipments undergoing the new period of PM. 
Thus, for each new period j , we determine the associated 

risk of failure jα  through )(tF .  

The results obtained after simulation of several periods are 
represented by a curve (see numerical results in the next 
section). The new periods are determined by changing the 
current period. For example, in our study we determine the 

new PM period by adding or subtracting one year (8760 h) 
for the current period. 

NUMERICAL RESULTS 

In this numerical application, we take as case of study the 
structure of the tank. We therefore follow the previous 
steps to determine the possible periods of PM, according 
to a risk of failure given by the DM. We assume that PMs 
performed on the tank are the visual control (VC) and the 
auditory control (AC). After interviewing experts, we get 
(referring to Table 2) the following gains in life: 
 
Type of maintenance Gain Actual PM period 
VC 0,1 17520 h 
AC 0,1 17520 h 

Experts’ data 
Interviewing experts on aging and average lifespan of a 

tank we get 1=pβ  and 30=pη years  ( 4103,26 ×  h). 

EXF and rejuvenation due to PM 
Our sample consists of 150 observed tanks. During the 
observation, 7 tanks generate an outage. The failures occur 
at respective dates: 21520 h, 17520 h, 43800 h, 8760 h, 
52560 h, 17520 h, 56,560 h. The observation period 
(censorship) is 70080 h. 
Applying the reduction of age according to the gains 
generated by VC and AC, we obtain the new respective 
dates of failure: 19768 h, 15768 h, 38719 h, 8760 h, 
42731 h, 15768 h, 46731 h. The censorship is of 54226 h. 
Using likelihood maximisation, these data give us: 

26,1=β  and 4103,15 ×=η . 

Posterior lifetime density function of 
unmaintained equipment  
Bayes’ theorem allows us to deduce the posterior 

parameters of the Weibull distribution: 04,10 =β  and 
4

0 104,22 ×=η . Then, we can represent the posterior 

lifetime function of an unmaintained tank (yellow curve in 
Figure 2). 
 

 

Figure 2: Lifetime function of unmaintained tank 
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PM period choice 
The behaviour of an unmaintained tank being determined, 
it is possible to apply "fictitious" maintenance periods and 
determine for each one, the probability of failure given at 

time 0MTTFt = . 0MTTF  represents the mean time to 

first failure of an unmaintained equipment. Note that, 
when T  follows a Weibull distribution, η≈MTTF . 

Thus, for an unmaintained tank, we have: 
4

00 104,22 ×== ηMTTF . 

For VC and AC cases, we know that they are carried out 
every 2 years (17520 h). We vary the maintenance periods, 
taking for each PM (VC and AC) the following periods: 
8760 h, 17520 h, 26280 h and 35040 h. For each period, 
we associate the probability of failure at time 

0MTTFt = . For example, a PM period of 3 years for the 

CV, gives the following distribution of failure times: 
 

 
 

at 4
0 104,22 ×== MTTFt , we have: 

47,0)( 0 == MTTFFVCα . Thus,  for each PM: 

PM periods  (VC or AC) 
Year Hour 

Risk of failure iα at time 

0MTTF ( { }ACVCi ,∈ ) 

1 8760 0,28 
2 17520 0,42 
3 26280 0,47 
4 35040 0,51 

Table 3: Risk of failure associated to VC or AC 

Figure 3 summarizes the changing in risk of failure 
according to PM periods of Table 3: 

:  

Figure 3: Risk of failure depending on PM periods 

Figure 3 is valid for both types of maintenance (VC or 
AC) since they have the same frequencies and especially 
the same gain in life. Relying on this curve, the DM can 
determine (by linear interpolation for example), the proper 
period of maintenance based on the risk of failure he 
considers acceptable.  

CONCLUSION 

In this study, we were able to determine the behaviour of 
unmaintained equipment by removing the effects of PM 
actions over its lifetime: providing its intrinsic lifetime 
function. Starting from this, we apply several maintenance 
periods to vary the related risk of failure and thus 
determine the most appropriate PM period for the DM.  
In this study, we relied on two sources of information: 
EXF and experts, in order to diversify sources of data. The 
opinion of experts allowed us to evaluate directly the gain 
in lifespan induced by PM. 
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