Gred

CIRED Workshop - Lyon, 7>8 June 2010
Paper 0066

MODELLING THE IMPACT OF PREVENTIVE MAINTENANCE OVER THE
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ABSTRACT

The presented approach aims to define and develop a
probabilistic model to measure the effectiveness of
preventive maintenance actions on equipment ansi, thu
optimize maintenance plans. To do so, it is necgdsa
deal with heterogeneous data, such as experience
feedback and experts. The Bayesian approach preeide
theoretical framework to treat these data. A nucari
study applied to electric power transformers isganeted

to validate the proposed approach. It results an
evaluation of preventive maintenance effects and an
actualized maintenance schedule.

INTRODUCTION

It is well known that asset management is an ingoort
sector in the various activities of generatiomsraission
and distribution of energy. It is important, to eresproper
management of assets, to have strict control ovatieus
stakes involved in asset management. For instamee,
can quote: economic stakes, security, dependahiliic.
Our study focuses on the operational safety of powe
transformers. These systems represent significaities

in the power grid and can impact significantly ¢ t
previous stakes in case of failure. In this contnd to
ensure better management of assets, we aim to Huapt
periods of preventive maintenance (PM) for power
transformer’s components.

In literature, there are several models and appesac
dealing with the optimization of maintenance pesiod
Each method differs according to the criterion of
optimization proposed or simply in the approachetach
that point. In [1] the authors propose, in ordemtoimize
the costs involved by maintenance, determine a acammm
interval for inspections and PM. In [2] the authooposes
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degradation [6].

This document is presented as follows. In the sestion,

we present the problem that we address and the
approaches and assumptions we use. We also give the
definition of different notations used in this spudhe

next section is devoted to the presentation of the
mathematical model and calculation methods. Indke
section, we take a practical case for applyingthie®ry

and present examples of maintenance periods regtiewe

OBJECTIVES OF THE STUDY

The aim of our works is to determine a better dedin of

PM periods, or at least ensure that current maémes is
still relevant. To redefine PM periods, we choasbadse
on the risk of failure admitted by the Decision Mak
(DM). To achieve this, we define a mathematical elod
based on lifetime function of maintained equipmeaitsl

we deduce the behaviour of unmaintained equipnhent.
some ways, the approach aims at determining thetedf
PM actions on the life of an equipment and thenonean
them to keep only the behaviour of an unmaintained
equipment (its intrinsic lifetime). Then, startifrgm the
characteristics of unmaintained equipments, we taey
maintenance periods to analyze the evolution &f ofs
failures. The difficulty in this approach is to getdefine
the behaviour of unmaintained equipments. Indeed,
available information concern operated equipmesus,
they are already maintained preventively. Note ,that
information arises from the Experience feedbackHJof

the maintained equipments. In order to vary thecesiof
information, we propose to combine EXF data aneggp
opinion about equipment behaviour (Bayesian apgroac
provides a theoretical framework to make this dat@n).

NOTATIONS AND DEFINITIONS

an approach based on costs induced by maintenancelet be a device, subject to breakdowns due to wear

actions and the gain in production quality. Thehaut
concludes that the application of PM with defined
periodicity is no longer justified when the ratibtbese

two parameters exceeds a certain threshold. Other
approaches are based on the effect of maintenamce o
devices’ aging to optimize the maintenance periods.
Several models have been proposed for this purgude
have been summarized in [3]. These models are lmased
the principle of reduction of the age, where weiasthat
maintained equipment will see its age rejuvenafest a
maintenance. Some authors like in [4, 5] use thesdels

to study strategies for replacement and maintenamber
constraints of obsolescent equipment or to simulate
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aging. We assume that a failure occurs unexpectedly

we model this by a random variabte)(T representing
the instant of first failure antl any instant. We note:

f(t) the lifetime density function.

F(t) failure time distribution associated tb(t) .
N, the number of PM up to timk.

A the virtual age of the material’ PM.

t, time of i PM.

V, the virtual age at timé (V, =t -t +Ay)
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X, time elapsed between tife—1)" maintenance
and thei™ maintenance X, =t, —t._,.

B, gain in life associated to tH&" PM.

a, the risk of failure associated to maintenarjce

J

Lifetime density function (Weibull density

function)

We consider the Weibull distribution with two pareters
as the lifetime density functiort{ = 0):

10 :ﬁ(ljme‘[;j
n\n

such that 5,
parameter and scale parameterfof On the other hand,

represent respectively, the shape
the cumulative functiorf- (t) , takes the form:

G
F(t)=1-e '/

Virtual age model
This model, proposed by Kijima [7], describes the af

an operating equipment that undergoes successive *

maintenances. The assumption in this model is &aatth
PM prolongs component’s life (or equivalently, gslthe
onset of failure), so that, the age of maintairngamment

(called it's virtual age) is rejuvenated at tiheV, <t.

Virtual age

i , Time
0 T, T, t

Figure 1: Virtual age of a maintained equipment

Bayesian approach

In this study, we question power transformer exptot
have an evaluation of the parameters (respectielgnd
1) that represent respectively, the average agditigeo

equipment and its average lifecycle in addition to
uncertainties related to their responses.

This approach is used to provide another source of
information and update data. Thus, in Figure 2, the
updated (posterior) lifetime density curve is betwéhe

two curves issued from the EXF and experts.
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Bayes’ theorem
Let (Q, A, P) a probabilistic space and I be therv

associated to a random experiméhtX is continuous
then we call Bayesian theorem the following relatio

L@/ x)f (6
F(01%) =E01O) .
j L(8/ x) f (8)d&
= X a realization of the experiment;
= G the parameters that characterize the
experiment;
= L(8/X) likelihood function (issued from EXF);
= f(6) priordensity function (issued from the
experts);

f (61 X) posterior density function.

HYPOTHESIS OF THE MODELE

e The PMs are supposed periodic.

« We only look at PMs occurring before first failure.

e« The transformer is a system composed of five

subunits: the tank, overvoltage detector, in chtage

changer, refrigeration circuit and electrical

components.

The analysis of preventive maintenance effects is

done on each subunit independently of each other.

e The annual operating time of a material is of 8760
hours.

MODELLING

Modelling PM effects

To model the impact of PM actions on equipmentyuse
the reduction of age model. Assume that, after €adh
equipment is rejuvenated to some extent. To dovso,
implement models of Arithmetic Reduction of Age (AR
so that, the equipment is rejuvenated to a promorif
elapsed time up to the last observed maintenangengK

type 2 [7]):

A=(-B)(AL +X) = A =i{|‘|

i=L\_j=i

(e Bj )in

To determineB; values B; [J[0]] ), we ask experts to

evaluate, directly on scale, the gain of life daePiM.
Each gain is associated to a quantitative vaIqurf

Extent of gain Gain B, O [0]1]
Weak 0,1
Mean 0,5
Strong 0,7

Table 1: Gain scale
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Modelling experts opinion on the ageing and the
average lifecycle

To model the average ageing of a component usjperesx
(denoted,é’p ), we propose an ageing scale such that, each

ageing intensity is associated to a valuqﬂy:

Ageing intensity ﬂp
None 1
Weak 15
Mean 2
Strong 3

Table 2: Ageing scale

To estimate the scale parameter by expefts, we
guestion the experts about the average lifetinselodnits.

Modelling an unmaintained equipment

Experts inform us about maintenance actions
effectiveness, that allows us at determining thetqraor
lifetime function of unmaintained equipments (by
exploiting the different sources of information:fexts +
EXF).

For the prior, we use the experts information dnggnd
average lifetime. Thus, we determine the parameters

,Bp /7, that define the Weibull prior density function.

The likelihood is obtained from the data of unmaiméd
equipments (using ARA models). The paramef8# of

this distribution are obtained by likelihood maxaaiion.
Likelihood is of the form:

) p1 (1Y (LY
g(t_ij o) fle 5)

i=1 77\ 1] *

Here, we considek failures and(n — K) censored data

[8]. Using the Bayesian computation, we determhme t
posterior density function of unmaintained equiptasfits
intrinsic lifetime function)

L(B.nlt,...t,) =

NEW PM PERIODS

We use in this part, the gain due to maintenantierec
and the intrinsic behaviour of equipments, to paeyifor
each new period of PM, the effect they have on the
probability of failure (risk of failure). This isahe based

on Kijima's model to determine the age that wowddeh
equipments undergoing the new period of PM.

Thus, for each new perio§l, we determine the associated

risk of failure a'; through F (t) .

The results obtained after simulation of severdbpe are
represented by a curve (see numerical resultseimext
section). The new periods are determined by chartgm
current period. For example, in our study we deirgerthe
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new PM period by adding or subtracting one yea8(gy)
for the current period.

NUMERICAL RESULTS

In this numerical application, we take as casduafysthe
structure of the tank. We therefore follow the poeg
steps to determine the possible periods of PM, rdaog
to a risk of failure given by the DM. We assume Pisls
performed on the tank are the visual control (V@) the
auditory control (AC). After interviewing expertse get
(referring to Table 2) the following gains in life:

Type of maintenance| Gain | Actual PM period
VC 0,1 17520 h
AC 0,1 17520 h

Experts’ data
Interviewing experts on aging and average lifesplaa

tank we get3, =1ands, = 30years 26,3x10" h).

EXF and rejuvenation due to PM

Our sample consists of 150 observed tanks. Dutieg t
observation, 7 tanks generate an outage. Thedaibgcur

at respective dates: 21520 h, 17520 h, 43800 H) 876
52560 h, 17520 h, 56,560 h. The observation period
(censorship) is 70080 h.

Applying the reduction of age according to the gain
generated by VC and AC, we obtain the new respactiv
dates of failure: 19768 h, 15768 h, 38719 h, 8760 h
42731 h, 15768 h, 46731 h. The censorship is 02642
Using likelihood maximisation, these data give us:

[ =126 andnp =153x10",

Posterior _lifetime  density
unmaintained equipment

Bayes' theorem allows us to deduce the posterior
parameters of the Weibull distributioff, = 104 and

function _ of

o = 22,4x10%. Then, we can represent the posterior

lifetime function of an unmaintained tank (yellouree in
Figure 2).

Lifetime density function (Weibull) Tank
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Figure 2: Lifetime function of unmaintained tank
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PM period choice

The behaviour of an unmaintained tank being detegthi
itis possible to apply "fictitious" maintenanceipds and
determine for each one, the probability of failgieen at

timet = MTTF,. MTTF, represents the mean time to
first failure of an unmaintained equipment. Notatth
when T follows a Weibull distribution, MTTF =77.
Thus, for an unmaintained tank, have:
MTTR, =n, = 224%x10".

For VC and AC cases, we know that they are caoigd
every 2 years (17520 h). We vary the maintenanceqs
taking for each PM (VC and AC) the following perod

8760 h, 17520 h, 26280 h and 35040 h. For eacbdheri
we associate the probability of failure at time

t = MTTF,. For example, a PM period of 3 years for the
CV, gives the following distribution of failure ties:

we

Failure times distribution

05 L a
04 "y/\/\/
0 .

O 0D OO0 WW W W W W W W W oW
SR I = e R = = = = =]
=535 =2 aa

wwwwwwwwwwww

att=MTTF, = 224x10*, we have:
a,c = F(MTTR,)) = O47. Thus, for each PM:

PM periods (VC or AC)| Risk of failure @; at time
Year Hour .
MTTF, (i O{vC, AC})
1 8760 0,28
2 17520 0,42
3 26280 0,47
4 35040 0,51

Table 3: Risk of failure associated to VC or AC

Figure 3 summarizes the changing in risk of failure
according to PM periods of Table 3:
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Figure 3: Risk of failure depending on PM periods
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Figure 3 is valid for both types of maintenance (¥iC
AC) since they have the same frequencies and edlyeci
the same gain in lifeRelying on this curve, the DM can
determine (by linear interpolation for exampleg tnoper
period of maintenance based on the risk of failuee
considers acceptable.

CONCLUSION

In this study, we were able to determine the bahavof
unmaintained equipment by removing the effects Mf P
actions over its lifetime: providing its intrinslietime
function. Starting from this, we apply several niaiance
periods to vary the related risk of failure and sthu
determine the most appropriate PM period for the. DM
In this study, we relied on two sources of inforimat
EXF and experts, in order to diversify sourcesatdThe
opinion of experts allowed us to evaluate diretttyygain

in lifespan induced by PM.

REFERENCES

[1] F. G. Badia, M. D. Berrade, Clemente A. Campos,

2002, "Optimal inspection and preventive

maintenance of units with revealed and unrevealed

failures”, Reliability engineering & system safety.

vol. 78, 157-163.

M. Ben-daya, 2002, "The economic production lot

sizing problem with imperfect production procesd an

imperfect maintenance"international journal of

production economics.ol. 76, 157-164.

L. Doyen, 2004,Modélisation et évaluation de

I'efficacité de la maintenance des systémes

réparablesINPG, Grenoble, France, 19-30.

J. Clavareau, P-E. Labeau, 2009, "A Petri restell

modelling of replacement strategies under

technological obsolescenc®&zeliability engineering

& system safetyol. 94, 357-369.

J. Clavareau, P-E. Labeau, 2009, "Maintenamzk a

replacement  policies under technological

obsolescence"Reliability engineering & system

safety.vol. 94, 370-381.

R. Y. Rubinstein, D. P. Kroese, 2Q®imulation and

the Monte Carlo methodyiley, Hoboken, New-

Jersey.

M. Kijima, 1989, "Some results for reparablstgms

with general repare'J Appy Probvol. 26, 89-102.

[8] A. Lannoy, H. Procaccia, 2005:valuation et
maitrise du vieillissement industrieTec & Doc,
Paris, France, 59-69.

(2]

(3]

(4]

(5]

(6]

[7]

Page 4 /4



