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ABSTRACT 

In this paper, a model-based predictive framework is used 
to optimize the operation and maintenance actions of 
power system equipment based on the predicted health 
state of this equipment. In particular, this framework is 
used to predict the health state of transformers based on 
their usage and operating environment. The health state 
of a transformer is hereby given by the hot-spot 
temperature of the paper insulation of the transformer and 
is predicted using the planned loading of the transformer. 
The actual loading of the transformer is subsequently 
optimized using these predictions. 

INTRODUCTION 

Reliability of the electrical infrastructures is becoming an 
important issue as a significant portion of the electricity 
grid is reaching the end of its operating age within coming 
decades. Current asset management is based on the 
condition of the infrastructure. The condition based asset 
management uses this condition information of the 
infrastructure to maintain and manage the electrical 
equipment [1]. Ageing models of the equipment are 
available or are being developed which can estimate the 
health state of the equipment based on the condition 
information. A model, which can be used to predict the 
health state of the equipment based on the condition and 
the usage of the equipment, is required in order to ensure 
optimal utilization of the equipment [2]. 
 
In [2], a framework was proposed for modelling the health 
state of power system equipment and used for modelling 
degradation of the paper insulation of transformers. This 
framework can be used to predict the effects of different 
maintenance actions and usage patterns. The predictions 
can then be used for the optimization of maintenance 
actions and the equipment usage. In this paper, we use this 
framework to optimize the loading of the transformer 
using temperature predictions. 
 
The hot-spot temperature of the transformer can be used to 
determine the loading limits [3, 4]. This hot-spot 
temperature can be predicted using the load of the 
transformer [3-7]. 
 

FRAMEWORK FOR MODEL-BASED 
OPTIMIZATION  

A framework for model-based optimization consists of a 
predictive health model [2]. The framework also defines 
the cost function for the optimization. Below the 
components of this framework are outlined briefly. 

Predictive health model 
The predictive health model in the framework includes a 
dynamic stress model, a failure model and an estimation of 
cumulative stresses, as illustrated in Fig. 1. As equipment 
ages, various stresses, such as electrical, thermal, 
mechanical and environmental stresses, weaken the 
strength of the equipment. The cumulative stresses of the 
equipment are affected by the usage pattern (e.g., the 
loading) and the maintenance actions (e.g., the 
replacement of parts) performed on the equipment. The 
health state of the equipment is represented by the 
cumulative stresses. Their dynamics can be described 
using a dynamic stress model such as the following 
discrete-time state-space model: 

 ( ) ( ) ( )( )ˆ ˆ1 , ,k k k+ =x f x u  (1) 

where ( ) ( ) ( ) T

a d .k u k u k=   u   At discrete time step k, 

the future cumulative stresses ( )ˆ 1k +x  are predicted based 

on the usage of the equipment ( )d ku , the maintenance 

actions ( )a ku  and the current cumulative stresses ( )ˆ kx . 

 
As the cumulative stresses increase over time, the 
probability of failure of the equipment also increases. The 
relationship between the cumulative stresses and the 
failure rate of the equipment is described in a failure 
model. The failure model uses the predicted cumulative 
stresses to predict the failure rate of the equipment. The 
failure model directly maps the cumulative stresses to the 
failure rate ( )ŷ k  as follows: 

 ( ) ( )( )ˆ ˆy k g k= x . (2) 

 
The cumulative stresses are indicated by condition 
parameters of the equipment, such as the partial discharge, 
temperature measurements, etc. Different online and 
offline monitoring systems can detect these condition 
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parameters. In practice, only a few condition parameters 
(such as the electrical and thermal stresses) are measured 
by monitoring systems. Estimates of the monitored 
cumulative stresses ( )eˆ kx  can be made based on 

measurements ( )kc  of the monitoring systems as follows: 

 ( ) ( )( )e x
ˆ k k=x h c . (3) 

 
The estimated cumulative stresses ( )eˆ kx  can be used in 

the dynamic stress model to update the corresponding 
cumulative stresses ( )ˆ kx . The remaining unmonitored 

cumulative stresses are predicted by the dynamic stress 
model. 

Optimization of maintenance and usage 
Typically, maintenance improves the health state of the 
equipment, which, in turn, reduces its failure rate. An 
optimal maintenance action balances the economical cost 
of the maintenance, the improvement of the health state 
and the reduction in the failure rate of the equipment. The 
usage indicates its utilization. 
 
The total cost of the usage and the maintenance actions 
consist of three sub-cost functions. The sub-cost function 
of the planned usage and the maintenance actions Ja 
incorporates the economical cost of the maintenance. The 
sub-cost function of the failure rate Jf takes into account 
the cost associated with the failure of the equipment. The 
sub-cost function of the cumulative stresses Jcs 
incorporates the cost of the deterioration of the equipment. 
The summation of these three sub-cost functions gives the 
total cost of a particular maintenance action in a particular 
state. 

The optimization of the usage and the maintenance actions 
is considered over a given predicted time frame of N steps 
in the future, such that future usage and future 
maintenance actions can be optimized. The total cost over 
the predicted time frame is considered in the optimization. 
Hence, the model-based optimization problem is 
formulated as follows: 
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subject to 

( ) ( ) ( )( )ˆ ˆ1 ,k l k l k l+ + = + +x f x u  

( ) ( )( )ˆ ˆy k l g k l+ = +x   for 0, , 1l N= −⋯ . 

 
The predictive health model is thus used to predict the 
cumulative stresses and the failure rates for the planned 
usage and different future maintenance actions. The total 
cost is evaluated for different future usage and 
maintenance actions over the predicted time frame. The 
optimal usage and maintenance actions minimizing the 
total cost over the time horizon is searched for. 

PREDICTIVE HEALTH MODEL OF 
TRANSFORMER 

The model-based optimization framework is implemented 
on a case study of the loading of transformers. The 
temperature rise, due to the loading, degrades the paper 
insulation of the transformer. This degradation process 
reduces the dielectric and mechanical strength of the 
insulation paper and hence reduces its life time [2-4, 8]. 
 
In order to determine the loading of the transformers, the 
hot-spot temperature is considered. The hot-spot 
temperature is defined as the temperature of the hottest 
part of the windings of the transformer. It is this 
temperature that is used for determining the level of the 
paper degradation. 

Thermal model of a power transformer 
The thermal models of a power transformer are based on 
the ambient temperature, the top-oil or bottom-oil 
temperatures and the hot-spot temperature. The oil 
temperatures are calculated based on the ambient 
temperature and on the dynamics of the heat transfer from 
the oil to the environment through the radiators. Similarly, 
the hot-spot temperature is calculated based on the oil 
temperatures and on the dynamics of the heat transfer 
between the windings and the oil. 
 
IEEE C57.91 [4] suggests a top-oil time constant based on 
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ud 

ua  
Fig. 1. Predictive health model which predicts cumulative stresses and 
failure rate for the given usage and actions. 
 



CIRED Workshop   -  Lyon, 7>8 June 2010 

Paper 0104 
  

  

Paper No  0104    Page 3 / 4 

the mass of different parts and on the cooling type of the 
transformer. The winding time constant, which describes 
the dynamics of the heat transfer between the windings and 
the oil, is estimated based on the cooling experiments. 
Swift et al. [5] propose a thermal model based on heat 
transfer theory, which includes thermal capacitances and 
non-linear thermal resistances. Their approach is extended 
by Susa et al. [6, 7] by considering the oil viscosity 
changes and the loss variation with the temperature. Their 
thermal model consists of the top-oil model and the hot-
spot model. 
 
The top-oil model and the hot-spot model are converted to 
the dynamic stress model (1) of the model-based 
optimization framework. The top-oil temperature and the 
hot-spot temperature are taken as cumulative stresses. The 
load factor is taken as the usage. The ambient temperature 
is taken as the exogenous input. The differential equations 
of the top-oil model and the hot-spot model are discretized 
by using the forward Euler approximation [9]. 

LOADING OF TRANSFORMER BASED ON 
THE HOT-SPOT TEMPERATURE 

The maximum allowable loading of a transformer mainly 
depends on the thermal performance of the transformer. 
IEEE C57.91 [4] defines four types of loading based on 
maximum hot-spot temperature. 
 
Under normal life expectancy loading, the maximum hot-
spot temperature allowed is 120 °C. Planned loading 
beyond nameplate (130 °C) is suggested for a planned, 
repetitive load, provided that the transformer is not loaded 
continuously at the rated load. Long-time emergency 
loading (140 °C) is suggested only for rare emergency 
conditions. Short-time emergency loading (180 °C) is only 
suggested for a short time in a few abnormal emergency 
conditions. Normal life expectancy loading is considered 
risk free [4]. In the other three cases, the calculation of the 
loss of life due to the loading and the risk of failure 
associated with this should be considered. 
 
The type of loading and the allowed limits depend on the 
preference of the utilities, the criticality of the transformer 
and the situation (e.g., under emergency conditions limits 
may be relaxed). The normal life expectancy loading 
based on the hot-spot temperature prediction is considered 
in this section. 
 
The load of the transformer depends on the energy demand 
and production. A prediction of the load can be made 
based on the predicted generation, the predicted loading 
and the network configuration. For the predicted loading, 
the hot-spot temperature should be below the maximum 
value of 120 °C for the normal life expectancy loading. In 
the case of thermal overloading of the transformer, the 

load should be reduced. The load can be varied using 
different methods, such as network re-configurations, 
changing the generation and the load, using an energy 
storage, etc. 
 
In our framework, the required loading is considered as 
reference loading uI,ref. The actual loading of the 
transformer uI should follow the reference loading within 
the given thermal limit of the transformer. Assuming the 
loading uI to be controllable, the optimization problem is 
specified as: 
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( ),hs 120°Cx k lθ + ≤  for 0, , 1l N= −⋯ , 

where xθ,oil and xθ,hs are top-oil temperature and hot-spot 
temperature, respectively. Equations (6) and (7) are given 
by the top-oil model and the hot-spot model, respectively 
[9]. The time step for discretization is given by h. 
 
The optimization problem (5) consists of non-linear 
constraints. The optimization therefore is solved by a non-
linear solver, SNOPT [10]. This solver is used through the 
Tomlab v6.1 [11] interface in Matlab v7.5. 

Simulation of loading based on the hot-spot 
temperature 
The 250 MVA transformer mentioned in [3, 6, 9] is 
considered for the case study. An initial hot-spot 
temperature of 59.4 °C, an initial top-oil temperature of 
49.8 °C and ambient temperature of 25 °C are assumed for 
the case studies. 
 
Optimization of the load given in (5) has been applied for 
the transformer. A time step h of 1 minute is considered 
for the discretization. A prediction horizon N of 15 
minutes is considered for the optimization. At each time 
step, the hot-spot temperature is predicted for the given 
prediction horizon. The optimal load profile is 
recommended based on the prediction. The load of the 
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transformer is adjusted based on the recommended profile. 
Reference loadings in the range of 1.4 p.u. to 1.8 p.u. are 
considered. Each loading is applied for a duration of 180 
minutes. The temperatures and the load are shown in Fig. 
2 and Fig. 3, respectively. As seen in these figures, the hot-
spot temperature is kept below the limit by lowering the 
load of the transformer. The dashed line in Fig. 3 indicates 
the starting of the adjustment of the transformer load. 

CONCLUSIONS AND FUTURE WORK 

A model-based predictive optimization framework has 
been applied for the optimization of the loading of a 
transformer. By using the optimized loading profile, the 
hot-spot temperature was maintained below the allowed 
limit. The proposed method optimizes the utilization of the 
transformer by recommending load changes when 
required. The dynamic rating of the transformer is 
achieved without exceeding the safety limit of the hot-spot 
temperature. 
 
The framework will be extended to include the load 
control of the transformers in the network. The optimal 
loading of the transformers will be maintained by 
performing an optimal power flow (OPF) computation of 

the network. The reactive power control, the tap control 
and the consumer load control will be considered in the 
optimal power flow computation. 
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Fig. 2. Hot-spot and top-oil temperatures with load control. For all the 
loadings, the hot-spot temperature is maintained below the limit of 120 
°C. 
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Fig. 3. Load profile for the proposed load control. The dashed line shows 
the starting of the adjustment of the load. 
 


