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ABSTRACT 

This paper presents a Monte Carlo simulation method for 

generating stochastic load profiles for models of low 

voltage (LV) electricity grids to support middle- and 

long-term strategic asset planning processes. Models that 

calculate aggregated loads in a deterministic way using a 

coincidence coefficient (simultaneity factor) do not give 

insight in the probability of an overload and eventual 

asset failure. Analysis of minute-to-minute load data 

obtained with Monte Carlo simulation, based on the 

characteristics and behaviour patterns of different 

household types, can provide more accurate probabilities 

of peak loads, especially for subordinate grids where 

individual consumption behaviours have relatively high 

impacts. Calculating this indicator for different future 

scenarios can help improve LV distribution grid capacity 

planning down to the component level.  

INTRODUCTION: WHY MONTE-CARLO? 

In electricity grid asset management, the minimum 

required grid capacity is typically determined on the basis 

of an estimated peak load. This peak load is usually 

calculated with the Rusck algorithm [1], i.e., by summing 

over all connected consumers the maximum consumption 

per individual consumer, multiplied by a so-called 

“simultaneity factor” [1, 2] or “maximum coincidence 

coefficient” [3]. This simultaneity factor depends on the 

number of connected consumers n, and may be computed 

by a function. Gwisdorf et al., for example, used 

f (n) =  + (1–) / n 
 with parameter values  = 0.028 and 

 = 0.75 for German distribution nets [3]. 

When aggregated peak loads are estimated using simulta-

neity factors (e.g., f = 0.89 for n = 5, f = 0.80 for n = 20, 

f = 0.75 for n = 50, and so on), the result is a single 

number. This provides no insight in the probability of the 

occurrence of a peak load that is higher than the capacity 

of the affected assets. If such a probability were known, 

this might help avoid investments in overcapacity [4]. 

The method and software presented in this paper aims 

approximate the probability distribution of peak loads, 

and especially the probability of a peak load at some 

point in the low-voltage grid that exceeds the affected 

assets’ capacity (cf. Figure 1). 

An important limiting factor for stochastic approaches 

that represent consumer loads as probability distributions 

(see e.g., [5, 6]) is that the detailed load data at the 

household level that is needed to empirically determine 

this distribution is usually not available, and costly to 

obtain. To overcome this problem, load profiles of 

individual consumers are generated with a simulation 

model based on the characteristics and behaviour patterns 

of households (see also [6, 7]). 
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Figure 1. Probability distribution vs. deterministic estimate 

of aggregated peak loads 

GENERATING LOAD DATA 

In the present research, the individual consumers are 

households. Other types of consumer will be considered 

in the near future, and it is expected that the general 

approach as outlined in this section will also apply to, for 

example, schools, office buildings, and small and 

medium-sized enterprises.  

Load data for a household are generated for each minute 

of a 24-hour period as depicted in Figure 2: 
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Figure 2. Generation of household load data 
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The actual power consumption of a household issues from 

the use of electrical appliances. Such appliance use will 

depend on the time of day (e.g., ovens and stoves before 

or at meal times, lights during early morning and 

evenings) and on the number of appliances installed in the 

household (e.g., television sets in different rooms). The 

periods of use and the frequency of use will depend on 

the time of year (seasonal variation) and day of the week 

(work/school or holiday) and on the type of household. 

The following sub-sections explain how these household 

parameters are specified. 

Household Types 

The use of electricity appliances in a household follows 

firstly from its composition: the number of people, the 

proportion of adults and children, and their age/social 

status (infant or school-going child, adult at home or 

working or studying fulltime/part-time). The size and type 

of the house will also affect electricity consumption, 

especially when electrical appliances for heating, cooling 

and lighting are used. Though gender may also influence 

appliance use, such differences of appliance usages are 

expected fall within the variance of the probability 

distributions for the frequency and duration of use for 

each appliance.  

Presently, eight basic household types are defined as 

shown in Table I, with their composition based on the 

factors mentioned above. The percentages indicate the 

relative frequency of occurrence of these household types. 

These have been derived from Dutch census data. 

 

Table I: Household Types and Their Percentages 
Household 

Type Code  Typical Member Composition % 

HH1 adult staying at single studio 32% 

HH2 single parents with children 6% 

HH3 working couple without children 4% 

HH4 working couple with children 9% 

HH5 couple without children, one is house-stay 19% 

HH6 couple with children, one is house-stay 20% 

HH7 retired couple 4% 

HH8 student house 6% 

Appliances 

The type and number of electrical appliances in a 

household will vary widely. A general penetration degree 

for each type of appliance has been derived from several 

data sources on the Dutch society.   

 

Number of Appliances in a Household 

The actual number of appliances of a particular type 

installed in a household is based on this general 

penetration degree and on household type characteristics, 

and also on the appliance category: house-type, shared-

type or individual-type. House-type are those appliances 

that are typically installed regardless of the household 

composition (e.g., heating devices). Shared-type are those 

appliances that are used in a shared manner by several 

household members (e.g., a TV set or a refrigerator). 

Additional shared-type appliances will be installed when 

the household size exceeds certain thresholds. Individual-

type are those appliances that belong to members 

individually, so that their usages are completely 

independent from each other (e.g., charging devices for 

portable electronics). Table II shows how a general 

appliance penetration degree P0 is modified for 

appliances in the three categories.  

 

Table II: More Specific Appliance Penetration Degrees 
Appliance 

category 
Description Derivation of P * 

House-type 

penetration degree is 

independent of household 

composition 

P = P0 

Shared-type 
penetration degree is 

related to # of members 
P = P0 + hh size / 5 

Individual- 

type 

penetration degree is 

directly linked to # of 

members 

P = P0 × (#adults + 

#children /2) 

* Notes:  

1. For shared-type: assume that when over 3 children are in the 

household, then an additional appliance is installed. 

2. For individual-type: assume that 50% of the children are old 

enough to have their own appliances. 

 

Use Frequency per Appliance  

The use of appliances may be related to the time of day. 

Lights are the obvious example, but many other 

appliances are used in time-related activities (e.g., hair 

dryer after bathing, dishwasher after meals). These 

activities themselves are not specified, but they are taken 

into consideration when for each appliance in a household 

type, one or more periods in a day (24 h) are identified, 

and for each of these periods, the number of appliance 

uses is specified as a probability distribution. The 

parameters of these distributions are set in accordance 

with the parameters of the household type, notably the 

number of persons. 

 

Use Duration per Appliance 

The typical duration of use is presently specified as a 

single probability distribution for each appliance. 

Although correlations with household parameters are 

conceivable, these are assumed to “dissolve” in the 

variance of the duration. 

  

Power Use Profiles of Appliances 

The power consumption of programmed appliances such 

as washing machines and microwave ovens is not constant, 

but tends to alternate between different levels according 

to a pattern (e.g., fill-heat-wash-drain-spin-rinse-spin). 

For the most common appliances, such patterns are 

presently being investigated using a Watts meter/recorder; 

they have not been included in the simulations to date.  
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GENERATION OF A LOAD PROFILE 

A load profile for a household is represented as an array L 

of 1440 real numbers, where each number corresponds to 

the load in Watts during one minute of a 24-hour period 

(starting at midnight). The values for L(i) are computed 

according to the following algorithm:  

 
set L(i) = 0 for (i = 0é1440) ; // initialize load to 0 for the 24 h period 
for each connected household h  { 

    select household type of h by drawing from an empirical 

    distribution like the one in Table I ; 

    for each appliance type a  { 

        if penetration p of a is specified for h  { 

            draw number n of installed appliances of type a  

            from distribution p ;  

            for each installed appliance a(i) (i = 1én)  { 

                draw wattage w from distribution specified for a ; 

                for each appliance use period aup specified for a in h  { 

                    draw start time and duration of aup ; * 

                    draw # uses u from distribution specified for a in h ;  

                    sum = 0; 

                    for (i = 1éu)  { 

                        draw duration of use du(i) ;  // in minutes 

                        sum = sum  + du(i) ; 

                    } 
                    rest = duration of aup ï sum ; 

                    for (i = 1éu)  { 

                        determine start of use su(i) ; ** 

                        for each minute m from su(i) to su(i) + du(i) ï 1  { 

                            L(m) = L(m) + w ; 

                        } 
}    }    }    }    } 
 

Notes: 

* The start time and duration of use periods are also 

specified as probability distributions to avoid, for 

example, that all households cook dinner at the same time. 
 

** The start times su(i) (in minutes since midnight) are 

determined by distributing the remaining time rest in-

between the uses. The regularity of this “interspacing” 

can be specified for each appliance (0 = random, 

1 = strictly regular intervals). In this way, the behaviour 

of thermostat-controlled devices can be approximated 

(see for example the fairly regular peaks on the left hand 

side of Figure 4, which are produced by the air 

conditioner).   

SIMULATION OF AN LV GRID 

The QWatts software developed by the second author 

allows rapid entry of a radial power distribution grid as 

exemplified in Figure 3. Each arrow denotes a single 

household. A grid can be assessed under different 

scenarios, where each scenario defines the relative 

frequency of occurrence of selected household types. 

Seasonal variations and future scenarios, and also except-

ional situations, can be specified by defining additional 

household types, e.g., “2 adults and 3 children all at home 

in mid-winter”, or “small gathering with friends for BBQ 

and then watch a World Cup football match”. 

 

Figure 3. Sample network layout in QWatts 

 

Given a scenario and a grid layout, household types are 

randomly assigned. The example in Figure 3 shows the 

result for a 3:5:3 ratio for three household types. Load 

profiles are then generated according to the algorithm 

specified in the left-hand column of this page. Loads are 

aggregated at each junction of the grid simply by 

summation (for each minute) of the loads on the branches 

departing from that junction. Electrical properties such as 

voltage drop are ignored. Figure 4 shows an example of a 

load profile of a single household, Figure 5 of the 

aggregation of 50 load profiles. 

 

 

Figure 4. Load profile generated for a single household 

 

 

Figure 5. Aggregation of 50 load profiles  
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To obtain insight in the probability distribution of peak 

loads, a histogram like the one in Figure 6 is produced by 

executing the presented algorithm a large number of times 

while collecting data on peak loads for every node in the 

grid. A Monte Carlo simulation comprising 1000 runs for 

the grid in Figure 3 takes about 40 seconds. The QWatts 

software can produce graphs as shown in this paper, as 

well as detailed overviews of appliance uses, for any node 

selected in the grid.  
 

 

Figure 6. Histogram of peak loads  

VALIDATION 

The results presented here are truly a “first try”; no effort 

has been made yet to validate the profiles. The figures 

show that the peaks and daily consumption are rather high. 

This may in part be explained by the air conditioners that 

were assumed to be switched on while people were in the 

house (a “hot summer day” scenario).  

Rigorous validation is needed before the outcomes 

produced by the QWatts software can be used to support 

the asset capacity planning process of distribution net-

work operators. Several validation activities are foreseen.  

Firstly, the properties of the household types defined so 

far, and the appliance uses they generate, will be 

scrutinized to see whether they are plausible. Global 

indicators such as the peak load per household (which 

should not exceed the limits set on household connections) 

and the extrapolation of the electricity consumption in 24 

hours to annual consumption (which should be within 

normal range) will be used to assess the plausibility of 

appliance use. 

Secondly, aggregations over large numbers of households 

will be compared with empirical transformer load data 

(corrected for non-domestic power use such as street 

lights) to check whether the overall 24h patterns are 

plausible. 

Thirdly, a data set that has been collected from individual 

households with smart meters installed will be used to 

verify through statistical analyses whether the generated 

load patterns differ significantly on characteristics such as 

the (minimum, maximum, mean, etc.) height, duration, 

frequency, and interspacing of peaks, as well as their 

distribution in time. 

CONCLUSION 

Although the household type profiles still need to be 

checked and eventually validated using empirical data, 

the first, preliminary results are encouraging, as they 

confirm the idea [6, 7] that bottom-up Monte Carlo 

simulation can provide relevant information. A quick 

analysis of the simultaneity of peak loads suggests that the 

simultaneity factor for n = 50 ranges between 0.48 and 0.52, 

whereas its calculated value (using f (n) =  + (1–) / n 
 

with parameter values  = 0.028 and  = 0.75 as reported 

in [4]) equals 0.75. The difference is a sign that there may 

be more slack capacity in LV distribution networks than 

is generally assumed. Evidently, more rigorous analysis 

and validation is needed to substantiate this.  

A limitation of the presented method is that the analysis 

only considers loads; voltage drops are ignored, whereas 

in rural or suburban LV networks with rather long strings, 

the critical voltage limits are generally reached before the 

critical loading [4]. This limitation can be overcome by 

performing follow-up analyses on a representative sample 

of grids using more sophisticated grid analysis software. 
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