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ABSTRACT 
This paper presents a novel mathematical optimisation 
model to assist with decision-making in the distribution 
network investment planning task, and more specifically 
when Active Network Management (ANM) schemes are 
deployed. The objective of the task is to find a least-cost 
network investment strategy, taking into account 
traditional reinforcement and up-rating of network assets 
alongside the deployment of ANM schemes as investment 
decisions. The problem is initially modelled as a 
complete mixed-integer program, before Benders 
decomposition is applied to divide the original problem 
into a binary investment problem and two operational 
sub-problems. Stochastic programming techniques are 
used to incorporate the uncertain nature of intermittent 
generation and demand when calculating operational 
costs over the planning period. 

INTRODUCTION 
As the electricity supply industry in the UK advances to 
meet challenging environmental targets, many 
Distribution Network Operators (DNOs) are witnessing 
an increase in the level of Distributed Generation (DG) 
integration, often generation which harnesses energy 
from intermittent renewable sources such as wind (with 
some marine/tidal generation emerging). In some areas 
such connections are resulting in the development of 
capacity bottlenecks on distribution networks with 
topologies which were not initially designed to 
accommodate significant levels of generation. 
Traditionally, such a constraint would be overcome 
through the reinforcement and up-rating of network 
assets such as circuits and transformers.  However, the 
conservative “worst-case scenario” planning paradigm 
from which network capacity is determined can result in 
a network where capacity limits are rarely reached.  The 
inclusion of stochastic elements in networks such as 
intermittent DG output further accentuates the 
miscalculation of required or desired network capacity.  
Specific forms of Active Network Management (ANM) 
schemes provide network planners with an alternative to 
the expensive reinforcement of network assets, through 
the real-time monitoring and control of power flow at 
bottlenecks [1]. In the event that a circuit is reaching its 
thermal limit, participating DG units can curtail their 
output to eliminate the network constraint in exporting 
circuits. The deployment of such schemes encourages a 

rethink of the current ‘fit-and-forget’ planning 
approaches, and drives the formulation of novel planning 
methodologies accurately represent the new dynamic 
operational characteristics of “active” networks. 
The optimisation approach presented in this paper 
integrates emerging ANM schemes and their features into 
a simplified network investment optimisation model. 
Uncertainty is taken into consideration through the 
treatment of customer load and intermittent DG output as 
stochastic parameters, using stochastic programming 
techniques to incorporate uncertainty into the model. 

REQUIREMENTS FOR ACTIVE NETWORK 
PLANNING 
The optimisation of network investment planning is 
conventionally interested in finding a minimum cost 
investment strategy which results in a network which can 
accommodate forecasted generation and demand growth 
while ensuring a secure supply of electricity. 
Traditionally, network investment within optimisation 
models is the reinforcement and up-rating of network 
assets, notably circuits and transformers.  
As new solutions such as ANM schemes emerge as 
alternatives to traditional reinforcement, there is a need to 
update investment planning models, introducing ANM 
deployment as a new investment decision within the 
optimisation. From a network capacity perspective, the 
deployment of ANM with DG effectively removes the 
units from any network capacity calculations and limits, 
as the DG can fully curtail its output, therefore not 
contributing to thermal constraints.  
Furthermore, the introduction of ANM deployment 
decisions to the optimisation problem establishes new 
financial functions within the model. Although the capital 
cost of deploying ANM solutions is significantly lower 
than traditional reinforcement it introduces an occasional 
operational cost; compensation payment to the DG 
developer for lost revenue through energy curtailment. 
The overall significance of this cost is dependent on the 
frequency and severity of energy curtailment on the 
network, which will be related to the scale of DG 
connected on the network. The key challenge in planning 
active networks is determining the level of DG 
penetration at which it is financially beneficial to invest 
in network reinforcement (at a greater cost) but provide 
DG a “firm” connection, or to deploy ANM solutions and 
control power flows in real-time, potentially incurring 
higher operational costs. 
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Introducing uncertainty 
The incorporation of ANM deployment within a network 
investment optimisation model requires a method for 
determining the operational cost over the planning period. 
As potential curtailment at any point in time is dependent 
on the specific generation and demand levels at that 
moment, uncertain parameters can be expressed as 
stochastic variables. Stochastic programming techniques 
split the optimisation model into 2-stages; a first-stage 
‘here-and-now’ investment decision, followed by finding 
the expected value of the second-stage operational 
problem, which contains the new stochastic variables [3]. 
A Monte-Carlo method is used to solve the expected 
value of the operational problem, by taking a large 
number of samples from the probability distribution 
functions (pdf) of the stochastic variables, and the 
operational problem is solved for each set of samples [3].  
Furthermore, there are many similarities between 
decomposition approaches for Stochastic programming 
problems and large Mixed-Integer Programs (MIP), of 
which there are many power systems optimisation 
examples [4,5]. The decomposition method is developed 
later in the paper. 

NETWORK INVESTMENT MODEL 

Full Mixed-Integer Program 
 
The proposed optimisation model finds the minimum-
cost investment strategy which results in a network 
capable of accommodating all DG connections, while 
meeting technical constraints. The objective function is: 
 

 
The first term of (1) represents the cost of upgrading the 
capacity r of existing circuit branches j, triggered via 
binary decision variable ݔ,. The second term represents 
the cost of deploying ANM schemes at nodes ܾ, with 
deployment decisions represented through the binary 
variable ݑேெ . The final term is the operational cost of 
curtailment ܱேெ, for each unit of energy curtailed ݕேெ 
at sample n. 

 

 

 
Constraints (2-4) are logical constraints associated with 

the binary investment decision variables. (2) updates the 
maximum capacity limit of circuit branches j following 
the investment decision x୨,୰, with ܭ the vector of potential 
capacity upgrades. (3) ensures that for all possible 
capacity upgrades ܭ on each branch j, only one binary 
decision variable may be nonzero. In order to maintain 
linearity, each right-of-way must be represented as 2 
separate branches, with positive-only flows in each 
direction, (4) verifies that both directions of each branch 
share the same investment decision variable, and thus 
capacity ܲ

ା. 
 

 

 
Constraints (5) and (6) represent Kirchoffs Current Law 
(KCL) and Kirchoffs Voltage Law (KVL) respectively. 
KCL holds if all power flows into a node equals all 
power flow out of the node. The representation above 
takes into account the following nodal parameters; DG 
output; branch power flows in/out; GSP flows in/out; 
Power losses; ANM curtailment; and load. ܫ denotes 
the branch-node oriented incidence matrix, and ீܫௌan 
incidence matrix which identifies what nodes represent 
the GSP link to the transmission network. Power losses 
are calculated linearly using piecewise approximation. 
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0 ≤ ேெݕ − ேெݒ ≤ −ൣ1ܩ   ேெ൧ (15)ݑ

 
 (7-12) represent the capacity limits of branch flow, GSP 
capacity (in both directions), voltage angle, DG output, 
and demand. (13) ensures the voltage angle at the 
reference bus is zero. (14,15) introduce a new variable  
which represents the product of ANM variables ݑேெݕேெ, 
ensuring DG units can only be curtailed following the 
deployment of an ANM scheme, when the binary 
investment variable is nonzero. These constraints 
maintain linearity as they avoid a product of two decision 
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ߜ ≤ −1)ܯ   ீௌ)     (13)ܫ



 C I R E D 21st International Conference on Electricity Distribution Frankfurt, 6-9 June 2011 
 

Paper 1025 
 

 

Paper No  1025   3/4 

variables in (5). 

Model Decomposition 
The structure of the model previously described makes it 
relatively straightforward to decompose into smaller sub-
models. The initial problem contains complicating 
variables, i.e. decision variables which when fixed make 
the remaining problem simpler to solve. As the problem 
has a natural 2-stage structure of investment decisions 
and operational decisions, Benders decomposition 
method can be applied [4]. This technique separates the 
full problem into two or more smaller sub-problems, 
which are solved independently, and information 
regarding feasibility and global optimality is shared 
between sub-models through coupling constraints which 
are referred to as Benders cuts.  
This particular model is decomposed as follows; the 
‘here-and-now’ investment decisions and related 
constraints form the master problem, the objective 
function of which includes an underestimation of the 
operational costs. In most cases of Benders 
decomposition, only one additional slave sub-problem 
exists.  However, due to the large number of instances of 
stochastic Monte-Carlo sampling which must take place 
to determine operational cost, two slave sub-problems 
will be used, with the aim of decreasing the solution time 
of the model [5]. The deterministic capacity sub-
problem performs a DC load flow at peak 
generation/load conditions to ensure all flows are within 
capacity limits, if ANM investment has been made at a 
DG unit, it is discounted from the load flow as full 
curtailment will be possible during constrained scenarios. 
The operation sub-problem calculates the expected 
value of the operational costs (compensation cost of 
energy curtailment), once the network investment meets 
capacity requirements. A modified OPF is used to find 
the optimal curtailment strategy to prevent overloads if 
necessary. N instances of the OPF are simulated, as the 
stochastic parameters take on values sampled from 
probability distributions in each OPF instance. 
The Benders algorithm is an iterative procedure, 
illustrated in Figure 1. Following the solution of each 
slave sub-problem, the Benders cuts which are generated 
and added to the master problem provide the master with 
information on what investments will further reduce the 
value of the slave solution. The solution of the master 
problem at the iteration is an underestimation of the 
global solution and is referred to as the lower bound. The 
upper bound is the final cost of investment and operation 
calculated once all sub-problems have been solved. These 
bounds are updated at each iteration of the process. Once 
both bounds are within a pre-defined tolerance of each 
other, an optimal solution has been found [5].  
 
Master Problem 
The master problem (16) is concerned with finding the 
optimal ‘here-and-now’ investment decisions: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Benders Decomposition Algorithm 
 

 
Which is subject to the investment constraints (2)-(4). 
The ߙ function represents an estimate of the operational 
costs, and is defined as Benders cuts are added to the 
master problem later in the process. 
 
Capacity Sub-Problem 
The first slave sub-problem is responsible for verifying 
the security of the network investment decisions made in 
the master problem. A modified DC load flow checks that 
there is sufficient power-flow capacity on the network to 
accommodate generation while meeting demand. In this 
example, the security is checked at a max generation/max 
demand scenario, though many security scenarios may be 
verified. To ensure the sub-problem will solve, an 
unbounded slack variable ܵ  is introduced at each node, 
which can reduce branch flows, guaranteeing that 
capacity constraints will always be met. Naturally, the 
object of this sub-problem is to minimize the total value 
of slack energy to zero. At this point an investment 
strategy which meets the security requirements of the 
network has been identified. 
The Objective function  of the Capacity Sub-Problem is: 
 

min ߙ   =  ܵ
ୠ∈అ್  

 (17)  

 
Subject to constraints (6-10), (13), and modified nodal 
current constraint: 

min ݖ =  C୨,୰x୨,୰
୨∈,∈ோ

+ Cୠuேெ +  ߙ
అ್

 (16)  
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Constraints (19) and (20) are added to fix the values of 
investment decision variables from the master problem. 
The dual values π୨,୰ and π are established, which 
provide information on the sensitivity of the investment 
decisions solved in the master problem. The value of the 
dual variable illustrates the effect a change in the binary 
variables will have on the cost of  ߙ௦ . 
 

 

 
In the case of  ߙ being non-zero, constraint (21) is 
added to the master problem, such constraints are known 
as Benders feasibility cuts. The Benders feasibility cuts 
improve the decisions to be made in the master problem 
during the next iteration of the process, improving the 
optimality of the following slave sub-problems.  
 
α୲ିଵ + π୶୲ିଵ൫x୨,୰୲ − x୨,୰୲ିଵ൯+ π୳୲ିଵ൫uୠ,

୲ − uୠ,
୲ିଵ ൯ ≤ 0 (21)  

 
Operational Sub-Problem 
The operational slave sub-problem performs an ANM-
dispatch OPF which curtails ANM-enabled generators 
when thermal constraints occur (either transformer or 
circuit capacity limits are exceeded). The objective (22) 
of the OPF is to find the optimal curtailment strategy 
which will minimise the unnecessary energy lost. 
Due to the uncertain nature of intermittent DG and 
demand, all loads and any wind DG are modelled as 
stochastic parameters. The sub-problem is solved for N 
instances, with values for the stochastic parameters 
sampled from their pdf. 

 
Subject to constraints (6-15), (19-20), and the nodal 
current constraint: 

 
Following the solution of ߙ the upper bound ݖ can be 
updated (24): 
 

 
The solutions can be checked for optimality, where ߝ is a 
pre-set tolerance. Once the upper bound and lower bound 
are sufficiently close, optimality criterion has been met. 

 

In the event that the optimality criterion is not met, the 
following Benders optimality cut (26) is added to the 
Master problem and the iterative process is repeated until 
optimality is reached. The Benders optimality cuts 
provide the master problem at iteration t with the 
parameter α୲, an underestimation of the operational sub-
problem cost at the current iteration.  
 

CONCLUSIONS 
The paper has described a new optimisation model for 
application to the distribution network investment task. 
Although the model presented is a simplified illustration 
of the real investment planning task, it demonstrates how 
the deployment of ANM can be integrated into 
established network optimisation models. In practise, 
when applied to distribution networks, an approach based 
upon simplified DC load flow equations will not produce 
a solution of sufficient accuracy, as voltage levels and 
reactive power flows are absent in the linearised DCLF 
calculations. To improve the model, the slave sub-
problems must employ full AC load flow constraints, 
increasing the computational complexity of the problem 
as the slave sub-problems will be non-linear and non-
convex. 
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