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ABSTRACT 

As Distributed Generation penetrates Low Voltage 
networks in greater quantities, the behaviour of the loads 
on these circuits, typically small and residential customers, 
must be better understood to avoid unnecessary investment 
and capitalize on increased efficiencies. Estimating thermal 
constraints as well as islanding capabilities hinges on 
accurate and representative load profiling, which requires 
periods of typical behaviour to be gathered through 
metering. The increasing availability of Smart Meters offers 
a solution to this with high frequency load measurements 
that align with generation dispatch periods. Prior work has 
taken steps to develop finer grained load profiles than those 
developed at the national level but given the high propensity 
for variability in residential customers, such metrics are 
overly general for small power systems. This paper takes 
previous work on load profiling at MV and LV levels and 
uses it to generate load profile compositions for learning 
the composition of customers that make up an LV feeder 
load and how it evolves over time. A simplification of a 
residential load profile model is applied to a set of real AMI 
data on a simulated feeder, resulting in 3 categories of user, 
a stratification learned from historical metering data. This 
yields an abstracted disaggregation of the loads on the 
feeder that accommodates the high variability and the 
heterogeneous profiles within the residential loads. Since 
compositional data is defined over the simplex rather than a 
real space, this restricts the statistical tools available for 
modelling to an inflexible subset. The solution presented 
circumvents this problem by utilising transforms that map 
the contributions to the aggregated feeder load into real 
space permitting a wider selection of analysis tools to be 
applied. A demonstration using a year’s worth of smart 
meter data is provided to show how latent traits in load 
composition and forecasted changes can be tracked over 
time using a modified linear dynamical system. This 
technique can be used in system planning to anticipate 
reversed power flows on LV networks where demand is 
insufficient to absorb distributed generation this avoiding 
the need for expensive tap changer upgrades or up rating 
the thermal limit on the lines. 

 

INTRODUCTION  

From a Distribution Network Operators perspective, 

understanding loads at the residential level facilitates 
realisation of a number of key Smart Grid technologies. 
Integration of renewable generation, scheduling of localised 
storage and provision of ancillary services require accurate 
load profiling. Aside from this, understanding the true 
nature of load can allow capacity planning and deferment of 
network investment. Although large customers attached to 
the MV network have been metered for several years, the 
adoption of higher resolution metering for residential 
customers through the deployment of Smart Metering or 
Advanced Metering Infrastructure (AMI) opens up new 
questions in terms of understanding their loads. Industrial 
customers have been noted to be predictable [1] as they 
undertake similar tasks regularly. Domestic loads can vary 
considerably from day to day and between identical 
properties [2]; much of this variability stems from the 
variability of domestic routine and the appliances in the 
home. Electric space and water heating requirements of 
overall metered residential loads will be subject to seasonal 
influence as will the use of certain appliances such as 
clothes dryers. Exactly how this evolves and how the 
evolution varies across dwellings is not clear. This paper 
proposes a means of modelling the behaviour of the 
residential loads that are attached to an LV network by 
grouping these and then monitoring how the membership of 
groups changes over time.   

NETWORK MODEL  

A residential area is modelled using the IEEE 123 node test 
feeder [3] with all plant, topology and constraint 
assumptions being retained. The network diagram for this is 
show in figure 1. The 114 spot loads are populated with 
anonymised 30 minute meter advances obtained from a UK 
residential area. For the purposes of testing on a changing 
season, the network model is run from January to July. No 
embedded generation is considered and network loads are 
assumed to be balanced. 
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Figure 1. IEEE 123-Node Test Feeder [3].   
 
The meteorological conditions for the area are also utilised 
to add context; for the purposes of this paper, this amounts 
to maximum ambient temperature. 

STRATIFYING LOADS 

Stratification of customer advance data has been identified 
as one possible way of segmenting residential customers 
into particular usage classes [3,4,5]. Different space and 
water heating technologies coupled with building fabric and 
utilization will lead to different quantities of energy usage 
in the domestic sector. Domestic routine will shape the size 
and position of peaks and the variability thereof. Various 
strategies for dividing residential loads into its constituent 
subpopulations have been proposed. [4] divided profiles 
into 48 half hourly periods and stratified the magnitude of 
loads in each period. [5] discriminated on shape and 
magnitude of profile using various clustering 
techniques.This is a prerequisite stage to identifying how a 
particular section of network is loaded and who the 
dominant contributors 
are.

 
Figure 2. 3 Profile stratification of 1 months worth of 
residential loads: (from top) high usage, medium usage, low 
usage.  
 

Using the clustering techniques proposed in [5], the 3 mean 
profiles shown in figure 2 are recovered. These are ordered 
from high to low according to their overall daily usage. 
What this does for a DNO is abstracts loads into ‘big’ and 
‘small’ customers on a residential feeder. On a given day a 
customer on the network will exhibit a profile that is closest 
to at most one of these mean profiles, allowing them to be 
labeled accordingly. 

 
Figure 3. Profile class assignment over 150 days using the 
stratification model shown in figure 2.  
 
Figure 3 shows how the 114 customers on the network were 
labelled over the course of the 150 days they were 
monitored: most were low (red) or medium (green) usage, 
but there are small amounts of high (blue) usage customers 
appearing sporadically. What would be useful, would be to 
track what proportion are in each usage group on the 
network and how they move between groups. 

COMPOSITIONAL LOAD PROFILING  

Stratification of loads on an LV network will result in a 
composition of loads from various strata making up the 
aggregated load at the feeder transformer. Compositional 
data [6] formally exists in the Simplex: each point in the co-
ordinate system sums to a constant. Figure 4 shows the 
proportions of loads in each of the 3 groups on the feeder.   

 
Figure 4. Composition of profile classes over the time 
period shown in figure 3 plotted in a 3-simplex.  
 
The colour of the points in figure 4 represents the number of 
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days from the start – the movement of the residential loads 
from a dominant proportion of medium sized loads to a 
dominant proportion of small loads as the trial moves to the 
spring and summer months. Although the Barycentric co-
ordinate system for representing the Simplex makes 
visualisation easier, it presents a problem for employing 
analytics which have an inherent assumption of Euclidean 
distance. This stems from dependence between dimensions 
in the simplex caused by their common denominator 
enforcing the constant sum constraint. [6] proposed the use 
of a transformation to data in the Simplex to map it into a 
Real space thus allowing a greater choice of analytics to be 
used. The log-ratio transform is as follows: 
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This maps the transforms the compositional variable Z of 
dimension D, into the variable X, of dimension D-1, in Real 
space. As noted in [6], a multivariate Gaussian distribution 
could then be used to represent compositional data and to 
provide a superior fit to distributions over the Simplex such 
as the Dirichlet which had limited flexibility in the 
dependency structures it could express and is 
computationally more difficult to deal with. Figure 5 shows 
the composition mapped into 2 dimensional real space. 
 

 
Figure 5. Log ratio transformation of load composition in 
Real space representation.  
 
Again, the colour axis in the plot represents the time in days 
from the start of the trial, with the evolution of behaviour. 
Note that the axes in the transformed space no longer 
correspond to the composition proportions, although context 
can be recovered by performing the inverse transform. 

TRACKING GROUP BEHAVIOUR  

Seasonal change, or more specifically meteorological 
change, will invoke changes in longer period energy usage 

behaviour. The composition of stratified loads has reduced 
the 114 by 48 dimensional time series into a 2 dimensional 
one, with much of the daily variability noise accommodated 
by the stratification process. The network behaviour over 
time can be tracked as the movement of a point in the two 
dimensional space as shown in figure 5.  

Kalman Filter 
 
The Kalman Filter [7] is a linear Gaussian model commonly 
used in spatial tracking applications such as radar and image 
processing. The Kalman Filter permits continuous 
estimation of a non-stationary Gaussian distribution in a 
sequentially updated manner, i.e. there is no need for offline 
learning. Its parameterisation yields a smoothed estimate of 
this mean as well as a likelihood measure of how the 
predicted and actual observations compare. The Kalman 
filter mean can be transformed back into the simplex to 
show how the composition of loads changes over time. This 
allows it to detect anomalous conditions, volatility, change 
points and forecasting to be carried out. The key problem is 
that compositional data is not Gaussian distributed; 
however, employing a Kalman Filter in the Log Ratio space 
allows changes in composition to be tracked in an online 
manner in a way that would have been intractable or sub-
optimal in the Simplex.  

Time Evolution of Group Behaviour 
 
The Kalman filter tracks mean µ and covariance ∑ of a 
multivariate Gaussian distribution. The Gaussian 
distribution represents the observation likelihood with 
respect to the model parameters learned from past 
observations: 
 

   ttttt xNxP  ,;  (2) 

Figure 6 shows the trace of the log of the observation 
likelihood from the Kalman Filter. 

 
Figure 6. Filter observation log likelihood drops with 
abrupt changes in group behaviour.  
Drops in log likelihood represent observations that were not 
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expected by the model based on the observations it had 
previously received i.e. abrupt changes. Notable events 
occur around days 10, 60 and between 100 and 120 of the 
trial period. To understand the context of this, the 
temperature is given in figure 7. 

  
Figure 7. Daily temperatures over the monitoring period.  
 
Day 10 has a significant drop in minimum temperature; day 
60 has a sudden increase in maximum temperature and 
between days 100 and 120 there are significant downward 
excursions for minimum temperature followed by upward 
excursions for maximum temperature. All of these would 
influence electric heating usage patterns hence the abrupt 
change detected by the filter. 

FUTURE WORK  

This paper has presented a means for tracking changes to 
the make up of loads on residential feeders. This has been 
shown working on a day by day basis and has allowed 
anomalous conditions or abrupt changes in behaviour of the 
loads to be detected. A relatively simple model was used as 
the basis for this which relied heavily on linear relations 
between daily behaviour. This model showed how the 
existence and potential occurrence of various sizes of 
residential load could be tracked. This in turn can advise on 
the potential for breaching plant and thermal limits. In 
future work, it is expected that more sophisticated models 
will be developed that will allow non-linear relations or 
multiple types of relations [8] to be accommodated. Such 
models could allow DNOs to forecast or extrapolate from 
current to future load composition scenarios and better plan 
their network investment for greater reliability. 
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