
 C I R E D 22nd International Conference on Electricity Distribution Stockholm, 10-13 June 2013

Paper 0328

CIRED2013 Session 3 Paper No 0328

MODEL-DRIVEN SOFTWARE DESIGN FOR SMART GRID DATA ANALYTICS

 Hamed VALIZADEH HAGHI Masoud ALIAKBAR GOLKAR Homayoun HAERI
 K. N. Toosi University – Iran K. N. Toosi University – Iran Tavanir Company– Iran
 valizadeh@ieee.org golkar@kntu.ac.ir haeri@tavanir.org.ir

ABSTRACT

Practical data analytics for the smart grid requires a
software platform which enables the distribution companies
to better correlate the projects, improve understating of
system requirements and simplify system design by
decomposing its complexity and large-scale data. This
paper proposes the model-driven software design (MDSD)
to managing and optimizing the smart grid data. It defines a
language for visualizing, specifying, analyzing, and
documenting the distributed object-oriented data. An
MDSD experience is reported that employs three software
environments interfaced with each other in order to create
a chain of the desired methods for an energy efficiency
program. The aim is to transform the data into actionable
decisions accessible and understandable by distribution
companies by taking software development into a higher
level of abstraction. As a pilot project, a comprehensive
data logging were performed for an MV/LV distribution
system. Subsequently, the technical losses were studied
using the developed software package. A Java-based GUI,
MATLAB/Simulink, and an embedded C-based data
management and calculation module are used in the
proposed MDSD.

INTRODUCTION

Distribution companies seeking to attain the maximum
benefits from advanced metering infrastructure (AMI) need
a data analytics strategy. Planners can determine the
analytical processes needed to turn unprocessed data into
actionable information for improved decision-making and
guide more efficient maintenance and operations. Collecting
accurate, timely and relevant data is the core of any data
analytics program, but the data needs to be put into an
appropriate context to become useful information. Five
fundamental analytical data transformations have immediate
relevance to smart grid [1]:

1) Aggregation is a summary of data combined from
several measurements.

2) Correlations identify statistical relationships between
related data that are useful for building models.

3) Trending is the practice of collecting information and
attempting to spot a pattern.

4) Exceptions are unexpected or abnormal conditions that
is useful in data cleaning.

5) Forecasts are predictions of future events or values
using historical data. Forecasts can also be built using
correlation data.

Because of its multivariate nature, measuring the
effectiveness of energy efficiency and smart grid programs

is a complex undertaking (e.g. see [2], [3]). The smart meter
data supply the computing power that enables the placement
of sensors and process of cleaning, transforming, and
modeling their data with the goal of highlighting useful
information, suggesting conclusions, and supporting
decision making in tools designed for energy efficiency
calculations and spatial analysis. This is a part of
comprehensive distribution system studies. Such studies
may possibly cause high computational burden especially
when considering enormous amounts of data from the AMI
and other data logger meters online. Hence, practical
system-wide simulation and calculation software need to be
modified to take advantage of different types and sources of
data recordings by combining abovementioned analytical
data transformations while maintaining computational
efficiency. Due to advances in hardware technology,
however, smart grid often have more memory and
computational power. Meanwhile, new software develop-
ment projects should adopt three characteristics of this
emerging scheme:

1) Higher levels of abstraction are needed as the demands
of designing more complex and data-intensive smart
grid applications requires the development of models
that let software designers focus on higher-level design
issues. This would manage the system complexity by
managing levels of abstraction and levels of detail.
Abstraction is recognized as a key concept in software
development by which data and programs are defined
with a representation similar in form to its meaning
while hiding away the implementation details.

2) System managers should be able to test multiple views
and concerns. Domain experts cannot understand all the
technology stuff involved in software development. This
problem is managed by selecting specific tool solutions
to meet the unique needs of each domain expert. Also,
the recorded data and real system response need to be
properly visualized and represented.

3) Models should be designed not only to make the system
comprehensible but also to integrate its functions and
make the computations efficient and scalable within
each function or domain.

Hence, data analytics and software for sensor-based power
grid is desirable to be more domain-related as opposed to
computing related. It is also about making software
development in a certain domain more efficient. This is
referred to as model-driven software design (MDSD) which
is currently a highly regarded development paradigm in
software engineering. Models are ideal means for
abstraction and can enable developers to master the
increasing complexity of software systems. MDSD is an
approach where models are the central artefacts in software
development and drive the code generation. This forms a
component-based assembly-centric paradigm which is
different from a third-generation language programming-

 C I R E D 22nd International Conference on Electricity Distribution Stockholm, 10-13 June 2013

Paper 0328

CIRED2013 Session 3 Paper No 0328

centric paradigm. Fig. 1 shows the components of the
MDSD concept. According to this figure, the developer
develops models based on certain metamodels. Then, using
code generation templates, the model is transformed to
executable code. Optionally, the generated code is merged
with manually written code. One or more model-to-model
transformation steps may precede code generation [4].

Model Metamodel

Transformer Transformation
Rules

MetamodelModel

Transformer
Code

Generation
Templates

Manually
Written

Code

Generated
Code

O
ptional, can be repeated

O
ptional

Fig. 1. A general concept of model-driven design methodology.

This paper introduces and outlines the idea of using MDSD
as a key to smart grid data analytics. Furthermore, adopting
and applying a MDSD methodology for studying
effectiveness of an energy efficiency program within a
smart grid is one of the original contributions of this
proposal. Hence, a multivariate data modeling module and
several metamodels that goes in parallel with network
simulation tools is proposed in this paper.

MODEL-DRIVEN SOFTWARE DESIGN

Outline of the reported project
The domain-specific components as well as analytical data
transformers are considered as effective parts of the MDSD.
Fig. 2 illustrates the proposed methodology flow. The data
modeling module is capable of representing different data
trends and behaviours with good flexibility in software
applications. In addition, each of the identified components
provides some set of functionalities. The main purpose of
the models is to give a straight definition for further
components deployment. Moreover, our goal is not only to
provide a description of interfaces but also to propose the
most optimal way that those functionalities could be
achieved. In order to implement the idea, a comprehensive
data logging were performed for an MV/LV distribution
system. There are 33 data loggers installed which recorded
over 40 million samples of 32 quantities spanning a whole
year. Fig. 3 shows two installed data logger meters.
Subsequently, the technical losses were studied using the
developed software package. A Java-based GUI (Fig. 4),
MATLAB/Simulink (Fig. 5), and an embedded C-based
data management and calculation module are used in the
proposed MDSD.

Customized Simulation Model Components
(Smart Grid Efficiency Analytics)

Domain-Specific Simulation Model Components
(Network, AMI Data Types, Operations, Interface)

General Components
(Network, Data, and Optimization Tools)

Modeling
Engine

Simulation
Engine

Domain-Specific Component-based Modeling and
Simulation Environment

Design Patterns and
Requirements

Object Orientation

System Theory

Algorithms
Optimization

Fig. 2. Model-driven software design for a smart grid data analytics
based on an implemented efficiency monitoring platform.

Fig. 3. Two of the data logger meters installed on-site.

High-Level MDSD
Components Access
Panel

Model-Based System
Architecture (Technical)

Model-Based System
Architecture (Unified)

Management Panel

Input Panel (Data, Manually
Written Code, Settings, etc)

Fig. 4. Gateway view of a requirement set (domain specific) captured
in the GUI concept that is linked to both embedded C++ and Simulink
model elements.

Introducing MDSD for smart grid data analytics
It is time for appearance of MDSD approaches within
software intensive smart grid industry . There are some
progress in the last few years in terms of interoperability
standards for software tools of smart grid. However, the
majority of software systems today are implemented in
general-purpose languages that address a broad domain.
Classical programming languages for power grid software
still survive alongside modern object oriented languages

 C I R E D 22nd International Conference on Electricity Distribution Stockholm, 10-13 June 2013

Paper 0328

CIRED2013 Session 3 Paper No 0328

such as Java or C++. However, the characteristics of a good
data analytics software, as mentioned in the Introduction,
can hardly be represented by using classical or object-
oriented code scripts. Additionally, MDSD languages such
as the OMG’s unified modeling language (UML) [5]
provide a formal visual syntax to describe the structural
aspect and part of the behavioural aspect of object oriented
software systems [6]. On the other hand, all advanced
applications of MDSD involve domain specific components
(DSCs). The DSCs are formal specification components that
incorporate domain concepts as first class language
elements. Familiar DSCs could be mathematical
computation or modeling and data management software.
Here, the Simulink and a C-based coded module are the two
DSCs of the presented project.

Starting to employ DSCs by distribution utilities requires
full management commitment within the organization. A
main advantage is that the utilities will be able to use
standard mainstream software programs in some areas and
maintain some of the previous tools, while introducing
model-driven DSCs to represent a superior alternative for
specific smart grid needs. One practical approach is to use
domain analysis, and the initial design of appropriate DSCs,
to clarify the question of scope before a rollout is
considered [5]. The success of using a DSC can be
measured by the compactness of the resulting specifications.
If it takes a disproportionate amount of time to maintain
specifications expressed in the DSC, it will not be possible
to convince an application development team to use the new
approach.

Metamodeling, as shown in Fig. 1, is an essential activity in
any MDSD. Metamodels are used to specify the abstract
syntax of a DSC, and they are also used in the context of
MDSD to describe the structural elements of independent
models, and model transformations. When defining domain
specific models in software systems, the key concepts are
visual elements, properties, and some structural rules that
enables grouping or classification of model elements. This
forms a major part of the MDSD, as shown in Fig. 4 for the
deployed project, and is responsible for much of its
usefulness and appeal.

In view of the fact that most distribution utilities are still
within the early phases of the journey towards smart grid
data analytics software through MDSD, it is worthwhile to
map out a path that ensures successful future developments.

1) Utilities need to set up a small pilot project similar to
the case proposed in this paper. Loss estimation would
make a good case since it is a part of comprehensive
distribution system studies and involves several primary
challenges both on the computationally efficiency and
technical data gathering.

2) Template languages should be used for developing
DSCs. Open source and widely accepted languages
would make a good choice in this regard. For example,
the C++ and MATLAB are used in the pilot project
outlined in this paper.

3) A large part of MDSD is about knowledge management,
and building domain-specific assets. Further business
DSCs can be added later if required. For instance, an
operation planning module, such as a program for

Fig. 5. A part of the network under study in MATLAB/Simulink along with a data analytics transformer window.

 C I R E D 22nd International Conference on Electricity Distribution Stockholm, 10-13 June 2013

Paper 0328

CIRED2013 Session 3 Paper No 0328

optimal reconfiguration of distribution feeders based on
minimal losses, could be added to the outlines MDSD.

4) Domain-specific framework development can be a very
substantial part of MDSD. For example, the reference
implementation and tool kit of the outlined pilot project
should be kept up to date for the purpose of being able
to test new changes and upgrades in the distribution
network.

PRACTICAL CASE STUDY: TECHNICAL LOSS
ESTIMATION

Architects of MDSD-based smart grid software are required
to have a high level of expertise in the field of distribution
systems. On the other hand, The MDSD approach is
underpinned by a variety of technical standards, some of
which are yet to be specified or are yet to be implemented in
a standard manner. Therefore, pilot projects will be
customized based upon the chosen projects of the utilities
and needs.

A practical system-wide simulation and loss calculation
software were chosen to examine a prototype of the MDSD-
based smart grid software. Main components of the
developed software package is shown in Fig. 6. This figure
uses the definitions of the MDSD presented in Figs. 1 and
2. Using transformers, metamodels and domain-specific
components (or model-based high-level abstractions)
discriminates this software from object-oriented software
platforms which solely use high-level programming
languages. Based on customizable components and user
interfaces, utility managers would be able to examine
different scenarios and designs within an integrated
software environment with no need to re-write or re-design
the software due to changing network policies and designs.

CONCLUSIONS

This paper introduces model-driven methodology into the
area of smart grid software development and data analytics.
The outlined concepts has been tested within a pilot project.
This project is carried out on a 33-data bus distribution
network. The main goal of the developed software is to
perform a full distribution system analysis based on the data
gathered from data logger meters. Testing the performance
of the MDSD-based program has however been placed on
the loss estimation. The main idea is at fully providing a
tool for exploring and comparing algorithms for optimal
smart grid data management. The future work includes
identification of design patterns by comparing various
concrete solutions and model transformations.

REFERENCES

[1] Siemens eMeter and Greentech Media, 2012,
"Understanding the potential of smart grid data
analytics".

[2] H. Valizadeh Haghi, M. A. Golkar, M. Tavakoli Bina,
2011, "Energy loss forecasting in active distribution
networks", Proc. 21st CIRED, Frankfurt, Germany, 1-4

[3] M. A. Golkar, H. Valizadeh Haghi, "Using a multivariate
design of experiment (DOE) method for congestion study
in distribution systems under impacts of plug-in electric
vehicles", Proc. 21st CIRED, Frankfurt, Germany, 1-4

[4] M. Völter, et al., 2006, Model-Driven Software
Development: Technology, Engineering, Management,
Wiley, 446.

[5] J. Bettin, 2006, "Transitioning to model driven software
development: preparing for the paradigm shift",
SoftMetaWare Ltd., 1-16.

[6] www.uml.org, Accessed Jan. 2013.

Data Input from AMI or
Data Logger Meters

Data Warehousing of Network
Points and Operations

Data Modeling

Data Optimization in View of Dependent
Operations and Network Points

GUI-Based Network
Representation

Network Modeling

Hybrid Simulation

Modular Computations

Storing and Outputting
Customized Results

Customized Components and
Scenarios of the User

Automated Secondary
Components and Scenarios

Model-Based Software Structure

Prioritizing Solutions and
Reconfiguration

Data Preprocessing Procedures
(Identification, Estimation and Cleaning)

Model

Metamodel

Transformer

Manually-Written Code

Customized Components

Modeling Engine

Simulation Engine

Domain-Specific Components

Fig. 6. Software design workflow for loss estimation and optimal reconfiguration from three perspectives displayed by arrows and two colour maps.

