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ABSTRACT 

This paper develops a multivariate probabilistic framework 

for PEV load modelling to be embedded in system planning 

problems. In order to successfully integrate the uncertainty 

attributes of the PEVs in the probabilistic planning issues, 

relevant vehicular load scenarios is provided through 

appropriate synthetic data. A student's t copula distribution 

function is utilized to capture the correlation characteristics 

among the included datasets namely home departure time, 

daily travelled distances and home arrival time of the 

vehicles during weekdays. Then, a Monte Carlo based 

stochastic simulation is provided to derive hourly load 

distribution functions of the PEVs. Extraction of the demand 

profile of the individual PEVs is fulfilled in order to 

estimate the demand profile of the fleet. The estimated 

probability distribution functions can be efficiently 

employed to generate load samples in probabilistic 

distribution system planning problems.   

INTRODUCTION 

Increasing national security of oil importing countries 

besides alleviating environmental concerns can be regarded 

as the main reasons of emphasizing on the proliferation of 

electric vehicles, especially plug-in electric vehicles (PEVs) 

[1]. Necessity of power delivering to this vehicular load will 

require utilities to develop associated structures and modify 

the existing grids.  

PEVs including battery electric vehicles (BEVs), plug-in 

hybrid electric vehicles (PHEVs) and plug-in fuel cell 

hybrid electric vehicles (PFHEVs) account for vehicles that 

can be charged directly by plugging into the grid [1]. 

Moreover, it is possible for these vehicles to inject their 

stored power back to the grid in order to support its 

reliability and to flatten the load curve. The former is 

usually referred as Grid to Vehicle (G2V) while the latter is 

called vehicle to grid (V2G). Although may be considered 

as one of fascinating attributes of PEVs, V2G will not be 

feasible in the near future due to lack of sufficient technical 

infrastructures. On the other hand, implementation of the 

controlled charging techniques conflicts with the consumers 

desires to charge their PEVs as fast as possible. This means 

utilities should be prepared at first to handle the 

uncontrolled charging demand of PEVs. 

The distribution system planning problems should attempt 

to provide a reliable and cost effective service to consumers 

while satisfying constraints such as keeping voltages as well 

as power quality within standard limits. Taking into account 

newly installed loads is an essential step for the planning 

issues that highly influences their outcomes. Electrifying the 

transportation sector introduces a new kind of electric 

demand that impose challenging complexities on the system 

planning problems. Regarding lack of historical vehicular 

load statistics, planners depend on load estimations for 

effective planning. PEVs load demands are probabilistic and 

follow their owners' driving habits and working schedules. 

Therefore, multivariate probabilistic methods should be 

employed in order to estimate PEVs power demand taking 

into account their stochastic attributes. It is worthy to notice 

that deficiencies in estimation of the future vehicular loads 

may results in system shortages or over expenditures.  

Copula function is adopted in this paper for modeling the 

associated uncertainties in terms of vehicles departure time, 

travelled distances, and arrival time. The proposed 

methodology establishes a single PEV charging demand 

model, and then provides required number of demand 

scenarios for the vehicle fleet integrated in power planning 

problems. The non-Gaussian probability density functions 

(PDFs) of the power consumptions within each hour is 

extracted that can be efficiently employed to generate 

required number of random samples of the demand power 

within the probabilistic system planning   

COPULA FUNCTION 

Copulas are functions that characterize dependencies among 

variables, and present an approach to create distributions 

that model correlated multivariate data [3]. Applying a 

copula, a multivariate distribution can be constructed by 

specifying marginal univariate distributions, and then, 

combining the univariate distributions to provide 

dependence structure. Actually, copula functions,              

C:[0 1]p-[0 1], are used to relate univariate marginal 

distributions, F1(x1), F2(x2), …, Fp(xp), to their joint 

distribution function, H(x1, x2, …, xp), as below: 

( ( ), ( ),..., ( ), ) ( , ,..., )1 1 2 2 p p 1 2 pC F x F x F x H x x xρ 

where Fk(xk)=uk, k=1,…,p and H are the cumulative 

distribution functions (CDF). It should be stressed that the 

copula function does not constrain choice of the marginal 

distributions. 

Due to the fact that the student's t copula presents more 

observations in the tails than the Normal copula, it is more 
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suitable for modeling of real life data. The multivariate 

student's t PDF, ht, is parameterized with ρ, the linear 

correlation matrix, µ=[µ1, µ2, …, µp]
T
, mean vector and υ,  

the degrees of  freedom. Let ρ be a symmetric, positive 

definite matrix with unity diagonal members and Ht the 

standardized (µ=0) student’s t joint CDF: 

1

22

2
1

( )
2

( )

1
1 ( ) ( )

2

T

p

t p

p

h















 
 
 



  
     
  

ρ

x

x μ ρ x μ

 (2) 

2

( , ,..., ) ... ...
1 px x x

t 1 2 p t 1 2 pH x x x h dx dx dx
  

     (3) 

where Γ(.) is the Gamma function. Then, for any                  

u = (u1,...,up) ∊[0  1]p
  the student's t copula is defined as 

follows:  
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where  1

tF 
 is the inverse of the univariate CDF of student’s 

t with υ degrees of freedom. 

THE PROPOSED FRAMEWORK  

Figure 1 illustrates block diagram of the developed 

framework for stochastic modeling of the PEVs load 

demand.  

Datasets and modelling parameters 

At the first step, it is essential to provide statistical datasets 

related to the vehicular demand. As abovementioned, lack 

of historical PEV load data necessitates estimation of the 

demand according to the associated parameters like vehicles 

departure time, travelled distances and arrival time. Theses 

random variables (RVs) depend on the owners' method of 

life and work schedule. The datasets employed in this study 

are related to a number of commuting conventional internal 

combustion engine (ICE) vehicles in Tehran.  

Moreover, modelling parameters such as batteries depth-of-

discharge (DOD) as well as batteries capacity (BATTCAP) in 

addition to the efficiency coefficient of electrical and 

mechanical components of the PEVs should be available by 

the producers. The simulation parameters applied in the 

case study are visible in Table 1. 

 

Table 1. The simulation parameters 

DOD 70% 

BATTCAP 20kWh 

EFFDRV 3km/kWh 

EFFChrg 90% 

   

Stochastic modelling methodology 

A three dimensional student's t copula is utilized to model 

the correlation among the datasets. Without considering the 

correlation characteristic, the obtained results cannot be 

rational and reliable. Figure 2 describes the employed 

copula algorithm. First, appropriate univariate non-Gaussian 

CDFs should be fitted to the three mentioned RVs. As may 

be seen in Fig. 3(a), the Weibull CDF is suggested as the 

most appropriate function to be fitted to the departure time 

dataset. To model the travelled distances as well as the 

arrival time a type III generalized extreme value CDF is 

derived and the results are illustrated in Fig. 3(b) and Fig. 

3(c) respectively. It is seen that the fitted non-Gaussian 

CDFs provide accurate approximation of the original 

datasets. Then, these CDFs are utilized to transform datasets 

to corresponding uniform sets. The parameters of the fitted 

distributions can be found in [4]. Afterwards, copula fitting 

can be accomplished through calculation of the correlation 

among the datasets. Correlation matrix of the mentioned 

datasets employed in the case study is obtained as follows: 

1 0.48 0.31

0.48 1 0.39

0.31 0.39 1

  
 

 
 
  

ρ
 

(5) 

Eventually, the extracted copula can be utilized to generate 

correlated samples. The fitted student's t copula function 

with 5 degrees of freedom, Ct: [0, 1]3-[0, 1], is utilized to 

relate the mentioned univariate marginal distributions. 

Figure 4 illustrates scatter plots of the randomly generated 

datasets related to one PEV. 
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Fig 1. The developed framework for stochastic PEV load modeling 
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Fig 2. The algorithm for utilizing the student's t copula 
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Fig 3. The data and CDFs of (a) home departure time, (b) daily travelled 

distance and (c) home arrival time. 

PDFs of vehicular demand within each hour 

The battery state-of-charge at the arrival time (SOCinit) is 

extracted based on the daily travelled distances. Taking into 

account the fact that available charging time in home 

charging is usually bigger than the necessary time to fully 

charge the battery, it is logical to assume that the battery 

SOC at the departure time are 100%. Therefore, the SOCinit 

of a PEV can be extracted as: 

init

DRV CAP

TRAV
SOC 100 100

EFF BATT

n

n   


 (5) 

where TRAV stands for travelled distance and EFFDRV 

indicates the efficiency coefficient of  a PEV that depends 

on the driving patterns and traffic conditions as well as 

power electronics-based driver efficiency of the electric 

motors.  

The hourly power consumption of the PEVs can be 

estimated after arriving home. Extraction of the demand 

profile of the individual PEVs is fulfilled in each iteration of 

the Monte Carlo simulation regarding the following steps: 

- SOCinit is calculated using (5). 

- The charging available time is evaluated by 

subtracting arrival time from the departure time 

that will be happened tomorrow.  

- Taking into account power rate of the charging 

system and the PEV battery capacity, the load 

demand within daily hours is estimated.  

By accomplishing the Monte Carlo simulation, it is possible 

to fit appropriate PDFs to the power consumption samples 

obtained during each hour. These PDFs that characterize 

load demand of PEVs in each hour can be used to generate 

scenarios of vehicular demand required by the system 

planners. Figure 5 shows a number of demand distributions 

during daily hours for a fleet of 50 PEVs in addition to the 

suggested PDFs fitted to them.   

Generating PEV demand scenarios 

In order to achieve a successful planning algorithm for the 

distribution systems supporting load demand due to 

vehicular loads, it is essential to take their uncertainties into 

account. By estimating hourly PDFs of these loads, it 

becomes straightforward for planners to produce as many as 

demand samples that satisfy their planning criterions. The 

randomly generated load profiles in addition to the 

conventional load profiles can be efficiently applied in a 

probabilistic distribution system planning procedure. As an 

example, Fig. 6 demonstrates a number of load scenarios for 

one PEV generated regarding the extracted PDFs besides 

their average scenario.    
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Fig 4. Scatter plots between (a) departure time and travelled distance, (b) 

departure time and arrival time, (c) travelled distance and arrival time.  
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Fig 5. Some samples of the distributions of PEVs demand power during 

daily hours as well as the fitted PDFs to them. 

CONCLUSION 

Integration of the vehicular loads into the probabilistic 

distribution system planning problems has been addressed 

in this paper. An stochastic modeling framework has been 

thoroughly elaborated that can be efficiently employed in 

order to take into account  the uncertainty  attributes of  the  
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Fig 6. Load demand scenarios due to one PEV extracted employing the 

fitted PDFs.  

 

plug-in electric vehicles. Accordingly, the methodology of 

obtaining appropriate probability density functions of the 

power consumptions of these vehicles during daily hours 

has been suggested and applied within a case study.  
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