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ABSTRACT

This paper draws on several years of experience of
developing condition based risk models at Northern
Powergrid, examining how actual experience has
influenced further model development in particular with
regard to forecasting techniques and the updating of model
parameters. Of special interest are the following aspects of
our experience: degradation forecast error; unforeseen
effects on asset condition; parameter uncertainty. We
conclude that, models developed at Northern Powergrid
provide useful investment decision support in the
production of robust business plans as long as the model
limitations are fully understood and managed.

INTRODUCTION

In the last decade condition based risk models baréed
to become established within electricity distributi
networks, fuelled by technological advances inemiihg
and storing condition information; accessibilityrobdels
already applied within civil infrastructure netwsrland a
desire within DNO’s to make smart decisions. It
important though to be aware that it takes timartive at a
model in which the parameters are relatively stabkkthe
functionality fully agreed upon. This is due tolnigvels of
inherent complexity and uncertainty in particulss@ciated
i) with forecasting model error; ii) with asset dition

information not captured due to random/unforeséents;

and iii) with input data and judgements about ctiodi
bands and weightings. This paper focuses on uraetisig
and managing uncertainty in the degradation fotecasd
on re-evaluation and updating of modelling paransete

S

UNCERTAINTY IN FORECASTING

Typically the rate of asset health degradation ben
forecast in condition based risk models either bina
probabilistic techniques such as Markov chains iar v
ageing curves [1].

Choosing the asset health degradation model

The choice of model will depend on its suitability the
type of degradation and also on ease of implenientah
curve based model may not be suitable for exanoplail
assets with a key degradation mode of crackingymexd by
random shocks. The use of curves in electrical tasse
reliability modelling has a strong history howesed this is

the approach employed in Northern Powergrid’s madel
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Curve descriptions of degradation modes

Figure 1 shows an example illustrating how a cwas
capture key features of a degradation model. Itvsha
complex S-shaped curve model for an oil degradation
process in which there is rapid initial deteriavatin oil
condition, and then a period of equilibrium before
significant degradation starts to occur due to atah,
ingress of additional water, or tank contaminatigatural
deterioration is modelled as a drift through tinoevd from
the good as new overall condition index values towthe
worst condition value. It is implemented as a weaigh
average between the average and worst deteriocatives.
The assumption is that if an item is deterioratiaglly it
continues to deteriorate badly. Each item in ihyeybation
follows its natural deterioration drift but at eairhe period
takes a random displacement step from this daftge of a
random walk [2].

Oil condition in 255 Switchgear assets

0il 0Cl

yoars

Figure 1. Complex Switchgear oil degradation model

Suitability and ease of implementation

Whilst curves such as those in figure 1 are validuse in
modelling they can also be fairly complicated hiatterms

of implementation and in determining what the input
parameters should be. In practice therefore manplsitic
exponential curve based models have generally been
implemented in electricity distribution networks.

A basic exponential curve is valid in engineeriegnris
because it accurately describes a degradation imael¢o
most of our assets, of accelerating degradatiogsras
health further deteriorates. It is also a good eufor
implementation purposes because its mathematical
properties make it straightforward to use. For gxant is
monotonically increasing which makes it impossifie
spontaneous improvement to be accidentally modedied

it only relies on two parameters, shape and stadecby
making justifying the inputs more straightforward.
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Updating the degradation forecast
The exponential curve has proven suitable for stesm

forecasting. However the approach of using a single

exponential curve has limitations for long termefoasting
due to a number of factors. One is that the init&imate of
condition degradation may be discovered at the tihtest
inspection to be an under-estimate or over-estimate
reality there are different deterioration rates diferent

items of the same type such as a particularly bad

environment that a switch is in or a poor standafd
manufacture. These “hidden” factors can be appratech
by giving an item a deterioration rate in keepinghvits
previous pattern of behaviour so after inspectianakes
sense to move the asset to a different degradative path
based on experience as shown in figure 2.

Adjusted ageing curve i ion experien
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Figure 2. Updating degradation curves from experience

Controlling the degradation forecast

Another feature of the exponential curve thatdlfsicult to
control is the escalating acceleration effect smaty be
necessary to modify the curve at its extremes,ser an
alternative curve with more terms such as a cébsimpler
solution is to use PF interval concepts to modi&y shape
parameter so that the curve is controlled neamitsof life
to produce a better forecast of time to failureis®econd
modification is also illustrated in figure 2.

Basis for using several curves

The idea of using more than one curve in this way i

consistent with delay time modelling concepts widiirn
are founded on P-F interval reliability theory [3].delay
time model is based around the P-F curve wheretReis
point where a potential failure can be detected lnd
where the functional failure occurs. The pointsrid &
divide an item’s condition into three states. Tieely) Time
model describes a two-stage failure process intwfaiglts
become visible in the first stage at a point u, #mbke
visible faults then cause eventual failure in #ngosd stage.
The “Delay Time” is the window of opportunity of idtion,
h for preventing failure and is the time betweenghitu
at which a defect leading to failure can first le¢ettted and
the point of failure itself. In order to avoid cstt@phic
failure F can be defined as moving into the wotatesthat

an item can be in and in which replacement mustirocc
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Hence the Delay Time Model has the three statag (Qu,
u+h) and (u+he) as shown in Figure 3.

—
g(u)
+—>

)

| T
0 u u+h

Defect identifiable  Failure

Figure 3. Delay time modelling concepts

Degradation forecast error

The trade-off is of model simplicity against foreta
accuracy and so we expect forecast error in thestaod
particularly relevant issue is that our forecadly arares
about what condition banding an asset is in nownbtibn
how long it has been there. For example an assehwhas
only just began to suffer surface corrosion willfbeecast
to make a transition to its worst state at the stime as
another asset which has had visible surface camdsir
many years, even though in practice it is mordyikteat the
second asset will reach the worst state first. Moraplex
models which manage time spent in a state, suskras
Markov models, are more accurate but computatignall
intensive and also subject to greater parametertaioty.
An example of this particular issue might be becami
apparent now that we have the benefit of havingva f
years’ worth of data for distribution switchgeargire 4
compares two degradation forecasts for year 5 ragdar
apart as illustration. Early results are beginnsmmdicate
that the middle category items possibly stay tHerea
longer period than previously forecast. On the otiad
the poorer category items may degrade to the vetast
faster than forecast. More data is needed befdirenar
conclusion can be drawn though and it is also gliffieult

to isolate where the revised estimate is due toraht
deterioration as opposed to other factors like éntipn
subjectivity and data quality improvements.

Distribution switchgear revised asset health forecast

Health Index Category

2011 forecast foryear5 2012 forecast for year 5

Figure 4. Distribution switchgear forecast
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UPDATING MODEL PARAMETERS

Learning drives the next model iteration so theyeai
continual need to monitor and update parameteidity
to actual experience. This can take time for theiong
reasons. Firstly the degradation forecast curvarpaters
are uncertain and there is no rich source of etéfytr
distribution asset condition histories. This is ghaetly to
the fact that electronic condition data collectonl storage
is relatively recent; and partly to data “censqusim terms
of assets being removed for safety reasons wetirbef
failure. It will be many years before we have cdiodi
histories covering the whole lives of electricitgtwork
assets and the end of life patterns may neveilgéfiown.
Secondly, as well as forecasting error due to uatgy in
the degradation curve, there is uncertainty instaeting
conditions from which the forecast is made. This is
associated both with the input data and with tladthéndex
parameters. These too need constant re-evaluatiagain
the models, and even the data collection requirésmen
some instances, are recent innovations. The doivesé
enabling technology in electricity distribution ass
management has only been in the last two decadles [4
Thirdly it is worth stressing the point that thedets are of
the degradation of external condition ratings aisidicator
of internal deterioration, rather than of interdederioration
itself. Therefore the model will capture observed
degradation of condition but will be missing unatvsdle
internal processes. Take wood poles for exampdeotiset
of internal decay and the rate of deterioration wélry
depending on unquantifiable factors, such as tladitgof
the original treatment. It is not practical, ifedk possible,
to model such parameters. Also, deterioration tefam a
variety of causes apart from the ageing processisand
influenced by external events. Research and expaxim
these areas can throw up the possibility of extendne
model to incorporate new information and discowerie

Updating the forecast curve’'s parameters

As more years’ worth of experience comes in theability

of the forecasting curve parameters can be re-atedu
although it is noted that asset importance and dyptates
inspection frequency, which can vary from monthgdars.

In some cases, notably overhead lines, suitablyecative
data may only be collected for some assets a feestbver

its lifetime. In other cases such as cables, feargety of
reasons condition data is not collected pro-activss
closing the loop in terms of forecast versus actual
degradation is that much more challenging.

This paper has discussed already how each yeforéoast
curve’s parameters are re-attuned to its curreitthimdex.
But beyond this is the question of the qualityle shape
and pace of the expectation curve in general. Ehdhe
underlying parameters of the entire forecastingehought
need updating. For instance, the few years’ worth o
distribution substation switchgear degradation erpee
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indicate a potential need to update the ageingecurv
parameters but we are still in early days to be &bbkay so
definitively or to say how it should be done.

Input data and HI model parameter uncertainty

Questions of data quality generally and of subyégtin
condition inspection measures have already been
extensively discussed in the research. There basklays
been the trade-off between the relative meritssiigian
overall index, which is the choice made at Northern
Powergrid, or of using the separate component messu
This has been extensively discussed in reseasshtiitre.
"The use of an index (like PCI) to define pavensate
causes some concern because it is an aggregasipedific
distress measurements. Maintenance requiremems an
therefore costs are more directly related to these
components of the index. It is also possible foaire
pavement conditions might be more accurately ptedic
from the components of the index ...(but) there dtngl an
enormous amount of work involved ..." [5].

Data uncertainty is managed in the company via@aia
updates and constantly seeking better data souFces.
instance we have recently been able to use madepth
partial discharge analysis in place of basic regalin
provided from annual inspections, where it is alsl.
Updating the health index model parameters and
methodology is also a continual process for usekample

we have taken advantage of having more plentifal an
detailed plant condition information in recent yedo
implement a methodology change that supplemeraslg f
age driven health index with the option of usinghare
purely condition driven value. We have also added n
condition points to the models where appropriatéaao.
Meanwhile reliability judgements about our variqalant
types are regularly updated as more information esom
through from failure investigations, dangerous decit
notices and national equipment defect reports. By
exception ad-hoc assessments, such as conductpltesam
and PURL tests (portable ultrasonic rot locatorj fo
overhead assets, provide an additional quantifiable of
asset health, which can in turn be factored inéoctirrent
and future health forecasts of similar assets ittt not
have been similarly assessed.

Unforeseen effects on asset condition

Some assets suffer a sudden shock to health bechuse
unpredictable random events such as third partyagam
damage caused by the weather and the environmaht, a
damage caused by birds, animals, and insects. @Bets

in apparently good health fail because of problems
detected by the health index model’s conditiondatbrs.
Managing this problem involves two aspects:- i)igleag
suitable processes for updating results to refipetational
experience; and ii) understanding the bounds around
average forecasts through probabilistic technigqudsom
use of scenarios that cover unforeseen eventualitie
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Processes for handling the non-modelled realitiekide
careful and auditable evidence-based analysigebres for
unforeseen failure; and recommendations for impaove
techniques to capture these in the model wherelgesso
consider the random events the degradation curgste
be regarded as an average curve existing withamger. It
has been demonstrated that, for long-term foretasti
particular, a probabilistic spread of curves sustthese
shown in figure 1 might be more appropriate [6].

APPLYING THE RESULTS

Condition based risk models should be fully transpigand
comprehensible in terms of their underlying engimeg
sense, reflecting established and well
engineering terminology and classifications. Thegadto

be defendable under scrutiny and results need to be

communicable at a wider business level. In applyhey
results the limitations imposed by uncertaintypamticular
for long term forecasting should be acknowledged,
understood and managed. The regular updating afdlde!
described in this paper contributes to such managem

In applying the results it is not unreasonablesguae that
the assets showing the poorest overall condition i
forecast to be doing badly a few years ahead. Tdiglgm

is about how good the longer term forecast islerassets
currently in moderate health. At Northern Powergrid
modelled outputs are used to provide a priority &g
potential candidates for the short to mid-term gtreent

pipeline [7]. These models can also support asset

management policy decisions, such as determinindnat
health it is optimal to refurbish or replace inntsr of
minimising cost whilst satisfying safety/reliabylit
constraints [8]. For longer term strategic decisieuch as
the scale and shape of investment the outputgatsade
decision support but with full awareness that “a&a never
expect to predict what will happen with absolute
confidence” [9]. Thus the outputs are regardeddisative
rather than as absolutely definitive answers. Qveva
conclude that, with the level of certainty arouind outputs
fully understood, our models provide useful inveshin
decision support in the production of robust busérgans
and are powerful tools in the decision making pssce

FUTURE CHALLENGES

Increasingly attention is turning in electricitysttibution
networks to building consequences of asset faihitethe
models. This allows risk-based investment decisibas
consider criticality as well as asset health. Snskenodels
show a health and criticality matrix where the igskassets
are those in the worst health / highest criticadibyner of
the matrix. Others calculate composite overall xiglues
formed from the probability of asset failure (hbabased)
multiplied by consequences of that failure [10]pically
consequences for network performance, environmental
safety and financial consequences are assessed.
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understood

Building risk models requires care and attention to
engineering detail and uncertainty continues to ae
challenge. Firstly there are difficulties with deténing
failure probability due to issues like electriaitigtribution
network failure data being censored by assets amtgb
allowed to fail; and asset specific complicationsts as
failure recording for very small sections of undergd
cable [11]; and overhead line inter-dependencieaning
absolute failure may be caused by one of many coemto
parts each having in turn its own functional fadluate.
Secondly the value of the consequence is deternfined
considerably complex underlying factors. For exampl
behind a safety consequence are assumptions about
probabilities of death or serious injury, and dehate
judgements about the cost of such incidents. Risttats in
other industries, such as civil infrastructure, epenplex
and have been developed over many years. We etxgect
same to be true for the electricity industry.
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