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ABSTRACT 

This paper presents the integration process of a distribution 

network Active Network Management (ANM) function 

within an operational environment in the form of a Micro-

Grid Laboratory. This enables emulation of a real power 

network and enables investigation into the effects of data 

uncertainty on an online and automatic ANM algorithm’s 

control decisions. The algorithm implemented within the 

operational environment is a Power Flow Management 

(PFM) approach based around the Constraint Satisfaction 

Problem (CSP). This paper shows the impact of increasing 

uncertainty, in the input data available for an ANM scheme 

in terms of the variation in control actions. The inclusion of 

a State Estimator (SE), with known tolerances is shown to 

improve the ANM performance. 

INTRODUCTION 

Automatic control systems, based on software tools, are 

becoming more desirable in distribution power systems with 

the proliferation of renewable energy resources. Such 

schemes are expected to, primarily, manage system voltage 

fluctuations, network power flows and fault levels. 

However, other functionality is emerging that includes 

power balancing, system frequency control and management 

of demand side resources for the primary system 

constraints. A critical concern that requires addressing is the 

robustness of online and automatic ANM 

algorithms/schemes. The ANM scheme’s functionality 

depends on convergence to a solution when faced with 

uncertainty and its reliability can be reduced by data skew 

and error [1]. In addition, very few measurements are 

currently taken at the distribution level and it is perhaps 

unrealistic to imagine that voltage and power flow are 

measured at every node. The number of measurements 

points will be limited in the first instance through economic 

reasons: instrumentation and information analysis are 

expensive and would be limited to the minimum necessary 

amount to obtain a satisfactory level of visibility of the 

network conditions. 

The work presented within this paper evaluates PFM 

functionality based on the Constraint Satisfaction Problem 

(CSP) [2] in an operational environment. The objective is to 

assess performances when subjected to different levels of 

data uncertainty and verify the introduction of a SE in the 

ANM architecture to mitigate the data uncertainty effects on 

the control action. 

PFM USING AN ONLINE CSP APPROACH 

Modelling the PFM problem as a CSP entails expressing the 

problem as a set of variables with finite discrete domains 

and a set of constraints. For PFM, the problem to be solved 

is concerned with deciding what control actions to take, on 

the Distributed Generation (DG) units, in order to maintain 

the network within the thermal limits (i.e. constraints). 

Therefore, the variables of the CSP are the controllable 

generating plant power output set-points and the domains 

are discrete values that the generators’ set-points can 

assume. These values are the maximum values that a 

generator can output (i.e. control signals). However, the 

intermittent nature of most renewable generating plants 

means that DG output is such that its output is continuous 

up to this discrete set-point value. PFM modelled as a CSP 

can be represented as [3]:  

 

(Vgens, DControl Signal, C)          (1) 

Where: 

Vgens = {Gen1, Gen2.... Genn}       (2) 

DControl Signal is: 

DGen1={1,…,0}, DGen2 ={1,…,0}, DGenn ={v1,…,vn}    (3) 

 

C is the constraint applied to the sets of variables:  

CPower Flow = { max| |ij ijS S }                  (4) 

CContractual = {k, l, m}     (5) 

 max
1MaxDG

Gi

N PC n
  

                  (6) 

 

Where Sij are line power flows associated with the line 
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power flow limit, max

ijS ; k ,l and m are integer numbers 

indicating the order in which generators Gen1, Gen2 and 

Genn were connected and where PGi is the calculated output 

of each DG unit. 

Modelling PFM, in this way, relies upon a load flow engine 

to evaluate the power flows within the network to determine 

any control actions that are required. In addition, it is 

possible to rank the generators in a last-in, first off (LIFO) 

manner to replicate the current connection regime used in 

the UK. One of the characteristics of CSP is that multiple 

solutions can be returned. This is valuable when 

measurement errors exist and the first solution does not 

alleviate the network constraints. The preference constraint 

would return the solution that curtails the least amount of 

generation whilst meeting the contractual (i.e. LIFO) and 

load flow constraints. Figure 1 depicts the inputs and 

outputs of the CSP PFM approach. Further information 

regarding this approach can be found in [2, 3]. 
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Figure 1 - Inputs and outputs of the CSP PFM 

algorithm [2, 3] 

A REALISTIC TEST ENVIRONMENT 

Part of the microgrid available at Strathclyde University [4] 

has been configured to allow the integration and testing 

process of an ANM function or scheme. The subsection of 

the microgrid network, used for this purpose, can include a 

wide variety of loads, generation equipment and 

measurement sensors that can easily be reconfigured to 

emulate different future smart grid network scenarios. The 

present grid set up for these initial ANM tests consist of 

seven buses and is shown in Figure 2.  

 
Figure 2 - Microgrid schema 

 

The first bus is connected to the main power supply and 

includes a variable load bank. Load banks are also 

connected to two other busbars (4 and 5 in Figure 2). 

Induction machines, which can also act as generators, are 

connected to buses 4, 5, 6 and 7. These units have a 

maximum real power output of 2.2kW, 5.5kW, 7.5kW and 

7.5 kW, respectively. 

The PFM algorithm, presented above, was chosen as the 

ANM control approach to manage the outputs of the DG 

units depicted in Figure 2. As well as the power network 

representing a genuine network, an attempt has been made 

to configure the measurement data and communication 

system to represent modern utility practices. The software 

was installed on a computer (mimicking that of a substation 

platform) and connected to the microgrid network.  

The sensor measurements coming from the microgrid are 

collected via a real time station (RTS) computer developed 

by ADI. The RTS has analogue and digital input/output 

(I/O) interfaces, can execute programs written with Matlab 

and Simulink, process directly the data collected, manage 

the electrical machines of the grid and guarantee their safe 

operation. After a first elaboration, the measurements are 

then made available, via GUI, on a standard PC. The PFM 

software was installed on an independent standard Windows 

PC with the different parts of the system communicating 

through OPC (Object linking and embedding for Process 

Control) functionality and using IEC 61850 as the common 

data model. The data coming from the grid sensors are 

mapped on the OPC server variables and sent from the PC 

connected to the RTS to the OPC server. The control 

software reads them, through the OPC server, and sends the 

control signals back through the RTS. To overcome the 

problems originated by the DCOM communication protocol 

the OpenOPC tool [5],  was installed to bypass the DCOM 

security settings. 

Using this approach the PFM software can evaluate the 

microgrid power flows and can compute and issue control 

commands when thermal limitations have been reached. 

These control commands are in the form of DG curtailment 

set-points as defined by the variables’ domain values in the 

CSP formulation. 

To update the RTS with control commands computed by the 

PFM software (that is to return control signals for 

implementation) the RTS analogue inputs are used. In order 

to send the data to the RTS analogue inputs a Beckhoff 

CX5010 Embedded PC with Intel® Atom™ processor has 

been used. The Beckhoff software presents OPC 

functionalities and the data can be sent using the OPC 

standard, specifying the correct path. A specific piece of 

software, based on the OpenOPC functionalities, was 

written in order to allow communications to these different 

OPC servers. 

Visibility of the ANM software is achieved through a local 

GUI that shows current DG output information and the 

implemented control signals along with the information 

used to arrive at the control signal. That is, the name of the 

line(s) overloaded, the actual power flow(s), the line 
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rating(s), the time of the event and the computed control 

actions. This GUI is updated each time new data is received 

and analysed by the PFM software. 

EXPERIMENTAL WORK AND RESULTS 

The sensors installed on the microgrid and the data 

acquisition system guarantee a precision of 2.14% in the 

measurement of voltage and current magnitude, and 

consequently a precision of 4.5% in measuring the power 

flow. This level of precision is considered enough to 

simulate the real operating conditions of an energy 

management system on a low voltage network. Under real 

conditions the data coming from the actual networks are 

taken from a few measurement points, often only current 

and voltage at the substation are measured.. Any additional 

data requirements would be substituted with data taken, for 

example, from load customer profiles (pseudo-

measurements). For example in [7] three cases are presented 

in which the uncertainty of real measurements is assumed to 

be between 1% and 3% and the uncertainty of the pseudo-

measurements between 20% and 50%. The error for real 

measurements can also be more prevalent for example in the 

presence of harmonic distortion on the line [8]. 

In order to show the effect of the uncertainty of the data on 

the performance of the ANM software a series of tests were 

executed on the microgrid. The induction machines located 

at buses 4, 5, 6 and 7 were set to compensate the load 

requested on the buses 4 and 5. Thermal constraints were 

set in the branches 1 and 3 by derating the limits within the 

PFM software and microgrid network model. The generator 

access priorities were assigned to represent a LIFO 

connection arrangement. Gen 1 was set to 1 (i.e. it has the 

highest priority), Gen 3 was set to 2, Gen 2 was set to 3 and 

Gen 4 was set to 4 (i.e. this unit would be the first to be 

curtailed if a thermal breach was detected). Then, 

progressively, the loads were reduced to zero starting with 

the load on busbar 5. This caused a rising power flow 

through the branches 1 and 3, and a consequent thermal 

constraint violation. 

The response of the ANM function, for this scenario, was 

evaluated against the following data sets:  

 

 An initial clean set of input data without any 

uncertainty 

 A set of data as collected from the grid (with an 

uncertainty of 4.5%) 

 A set of data in which the uncertainty of the loads 

and the machines power flow was artificially 

increased to 6% 

 A set of data as calculated by a state estimator 

(SE) that reduces the uncertainty to 2%  

 

In Figure 3 the different control signals sent by the ANM to 

curtail the power output of the generator on busbar 7, Gen 

4, in presence of different levels of uncertainty are shown. 

As a result of the steady decrease in loads at busbars 4 and 

5, the ANM reduces regularly the power output of the 

generators when the data is not affected by any uncertainty. 

This can be seen in Figure 3 with Gen 4 being curtailed 

from 50% output down to zero output (tripped off) over the 

scenario period. When considering the actual measuring 

coming from the microgrid (4.5% uncertainty), the 

curtailment is relatively regular (compared to the case with 

no uncertainty) however the curtailment depth is bigger than 

that necessary to take in account of the uncertainty. 

Furthermore, with additional uncertainty added to the data 

(6.5% uncertainty), the curtailment presents some variation 

to the depth of the curtailment required and the time at 

which curtailment is required to alleviate the thermal 

overload. For the 2% (SE) case the time step, when DG 

curtailment is required, is the same as the case without any 

uncertainty. However there is an error in the control depth 

albeit improved from the previous cases.  

 
Figure 3 - ANM control signals to Gen 4 

 

In Figure 4 the differences between the control signals 

(relative to the base case with no uncertainty) sent in 

presence of uncertainty are shown. These differences 

relative to the base case with no uncertainty have been 

considered as the errors in the control action caused by the 

presence of uncertainty in the input data. 

  
Figure 4 - Difference between control signal values with 

respect to the case when data had no uncertainty 

 

For the case when using data with an uncertainty of 4.5% 

the effect is that the control signal is always overestimated 

and the average value of the error in the control signal 
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calculated over the measurement period is 0.04, and its 

variance is 3.4% of the average. It can be seen in the case of 

6.5% of uncertainty how the control signal could be 

underestimated. This is an undesirable condition because if 

the generator is not curtailed enough the integrity of the 

lines would not be preserved. In this case the average of the 

error absolute value in the control signal calculated over the 

measurement period is 0.033 and its variance is 6% of the 

average. It is possible to improve the situation by using a SE 

that provides uncertainty of 2% and as a consequence 

reduces the control signal error average calculated over the 

measurement period to 0.02 (variance: 3% of the average). 

A SE reduces the uncertainty of the data provided these are 

enough data to guarantee the observability of the grid. The 

SE presented in [9] is used for this simulation with the 

technique presented in [10] used to find the best position for 

the minimum set of data that guarantee the observability of 

the grid and minimize the uncertainty of the estimated data. 

The technique presented in [10] also enable the calculation 

of the estimated data uncertainty. With the application of 

the SE the uncertainty of the majority of the data is reduced 

from the original 4.5% to a value between 2% and 2.5%. 

Also in this case an overestimation of the necessary control 

signal is present but is less prevalent than before the SE 

application. In conclusion, with the growth of the input data 

uncertainty value from 2% to 4.5% it can be observed that 

the error in the depth of the control action increases. For the 

6.5% of uncertainty it can be noted that the average error 

does not rise however the variance significantly increases. 

CONCLUSION  

This paper has presented the implementation procedure and 

testing of an ANM function, with regards to data uncertainty 

in an operational environment, within an experimental 

microgrid laboratory. The behaviour of the ANM software 

has been shown when presented with no erroneous data as 

well as the impact on the control signals when uncertainty is 

added to the data set. The analysis found that no divergence 

of the load flow engine was encountered when erroneous 

measurements, up to 6.5%, were presented to the ANM 

software. However, with data uncertainty it can be seen that 

the error, in some situations, is large enough to either move 

the curtailment to a deeper set point (next domain value for 

the variable) or not curtail sufficient levels of DG. This 

suggests that larger gaps between the domain values may 

have a positive impact on the solution with data uncertainty 

with the trade-off of curtailing a greater depth of DG. The 

studies have also highlighted the importance of the 

reduction in uncertainty through use of a SE. The 

uncertainty of the input data is reflected in the uncertainty of 

the final power flow calculation, so the operators taking in 

account of the uncertainty reduction introduced by a SE can 

adopt less conservative thermal detection limit to 

compensate for expected errors.  

FUTURE WORK 

Further work in this area would include the evaluation of the 

data uncertainty value at each cycle of the ANM stage to 

ascertain potential error mitigation rules for varying errors. 

This would entail further studies to evaluate the statistical 

outcomes from this paper for additional case studies over 

longer time periods. In addition, examining the 

computational impact of evaluating uncertainty, in a real-

time scheme, would be beneficial.  
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