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ABSTRACT 
This paper discusses the criteria that must be considered 
for the placement of new measurements in distribution 
networks in order to obtain the best state estimation 
performances. A better network state monitoring will 
improve all the other network management tasks. 
The impacts of the measurement device placement on the 
state estimation accuracy and on the bad data detection 
capabilities are illustrated. To ease the comparison of 
different measurement sets, a visualization method of the 
expected performances of the state estimator is presented. 
The paper finally gives measurement placement 
recommendations based from a literature review and our 
experience gained from simulations. 

INTRODUCTION 
In the near future, more and more measurement devices will 
be installed in the distribution system. The reason for the 
installation of these devices is to improve the network 
observability that is necessary to operate the system closer 
to its limits. 
For instance, more distributed generation can be integrated 
into the grid if an enhanced monitoring system is used: the 
network voltage that is disturbed by the distributed 
generators must be first monitored with an acceptable 
percentage of errors before the appropriate volt/var control 
can be performed.  
To get the most benefit of these new measurements, state 
estimation is a necessary tool. Indeed, state estimation will 
take into account the full measurement redundancy to 
estimate the most likely network state and because state 
estimation can be used for bad data detection or for 
topology error identification.  
For cost reasons, the number of these new measurement 
devices will be limited and measurement placement 
strategies are needed to take the most benefit of these 
additional measurements. 
For this purpose, this paper attempts to answer two 
questions: 

• What criteria must be considered when installing 
sensors in the distribution grid? 

• How many sensors must be placed, and for what 
result? 

 
The paper first recalls the fundamentals of state estimation.  
Second it presents the measurement placement criteria that 
must be considered during the measurement design stage. 
Third, a visualization technique that can help the user to 
understand the benefits of additional measurement devices, 
and allow him to select the best measurement placement 

scenarios amongst different possibilities is presented. The 
visualization and the placement impact on bad data 
detection capabilities are illustrated. 
Finally, we conclude the paper with some measurement 
device placement recommendations based from our 
observations and a short literature review.  

STATE ESTIMATION 
From redundant measurements, the state of the system (x), 
which is the complex voltage at every node, is estimated by 
solving a weighted least square problem: 
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Where J(x) is the cost function that must be minimized over 
x, z is the measurement vector, h(x) is the measurement 
model and R is the covariance matrix of the measurements. 
Typical measurements are voltage magnitude, current 
magnitude and active and reactive power. Because there are 
generally few real-time measurements, load forecasts (also 
called pseudo-measurements) are added to make the system 
observable. The network model can be single or three phase 
to consider the unbalance.  

Solution 
The minimization of the cost function is a nonlinear 
optimization problem that is usually solved using the 
iterative Newton-Raphson method.  
In addition to the state estimate, the state estimator provides 
also a measure of the state estimate uncertainty (its 
covariance matrix, )ˆcov(x ) that is function of the accuracy 
of the measurements ( iσ  in (1)) and of the measurement 
set.  
The optimization will result in the most likely state estimate 
(maximum likelihood estimator) if the measurement noise is 
‘well-behaved’ (zero-mean and normal distribution). If this 
is not the case, for instance because of bad input data 
(defective measurement device or wrong network 
configuration assumed), the bad data must be detected and 
eliminated. Otherwise the estimator will result in a 
significantly biased state estimate. That is why network 
configuration errors and bad data suppression routines are 
essential stages of the state estimation. 
Details about the implementation of state estimators can be 
found in any power systems textbook. 

METER PLACEMENT IMPACT 
The number of measurements, their locations and the 
measurement type will strongly impact the performances of 
the state estimator on different aspects whose are presented 



 C I R E D 22nd International Conference on Electricity Distribution Stockholm, 10-13 June 2013 
 

Paper 0627 
 

 

CIRED2013 Session 3 Paper No 0627      

below. These measurement placement criteria can be 
considered during the measurement design state: they can be 
evaluated in order to select the better measurement 
placement scenarios amongst different possibilities. 
The cost criterion is essential during the measurement 
design stage but it is not discussed in this paper. 

Observability 
Unlike in transmission systems, the observability of 
distribution networks without pseudo-measurements cannot 
be obtained in an economic manner. Thus it is not a design 
criterion for distribution systems. 
However, if possible, the number of pseudo-measurements 
should be minimized since they are less reliable than actual 
measurements. Nevertheless, the maximization of the state 
estimation accuracy will tend positively toward reducing the 
number of pseudo-measurement as well. This is the topic of 
the next section. 

Accuracy of the state estimate 
The purpose of state estimation is to obtain the most 
accurate network state given the redundant measurements.  
In practice, the true state estimation accuracy is never 
known since the error-free measurements are unknown. In 
this context, the maximization of the accuracy of the state 
estimate is done via the minimization of the state 
uncertainty. 
This measurement design criterion is often used in the 
literature [1][2]. The measure of accuracy can be the 
average or the maximal value of the nodes voltage 
magnitude or the lines flow standard deviation, or a 
combination of both. These statistics are easily calculated as 
a byproduct of the state estimation. 
To ease the comparison of different measurement sets, the 
visualization of the state uncertainty on the map of the 
network is implemented. This will be further explained and 
illustrated in the second part of this paper.  

Bad data detection and identification capabilities 
The measurement redundancy provides a mean for 
increased accuracy of the state estimate, but is also a mean 
to detect and possibly identify bad data, such as a defective 
sensor, a bad load forecast or a network configuration error. 
The bad data detection and identification method consists to 
analyze the residuals ( )ˆ(ˆ xhzr iii −= ) and their statistical 
properties via a chi square test on the cost function ( )ˆ(xJ ) 
and the values of the normalized residuals ( )ˆ(ˆ ii rstdr ). 
We stress that if the bad data indicators don’t detect the 
presence of a bad data, doesn’t mean there is no bad data; 
but that given our measurement set, the estimator doesn’t 
detect one. The capabilities of bad data detection and 
identification depend strongly on the measurement set. 
To design a measurement set robust against bad data, one 
method proposed in the transmission system literature is to 
choose the measurement location so that the number of 
critical measurements is reduced [1]. Critical measurements 
are measurements on which there is no redundancy, and if 
removed, they lead to an unobservable system. Therefore it 
is not possible to detect a bad data on critical measurements. 
But in distribution, as long as there is a pseudo-
measurement for each load, the network will be still 

observable when flow measurements are removed.  In 
theory, bad data on flow measurements are thus always 
detectable. But in practice, since the load models are quiet 
uncertain, the detection of some bad data could be more 
difficult with some measurement configurations than others.  
The identification of leverage point measurements can be 
used as a measure of the bad data detection capabilities of a 
measurement set in distribution state estimation. A 
measurement set that minimizes the number of leverage 
points will be indeed more robust [2].  
Leverage point measurements are measurements ‘close to be 
critical’. They have a high impact on the state estimate, and 
if bad, they will attract the estimate toward them making the 
residuals low, which will make difficult the detection of bad 
data on those measurements. Leverage measurements are 
characterized by an estimated standard deviation of their 
residual close to zero. Unfortunately, it is difficult to set the 
threshold that defines what is close to zero.  
Lastly, because distribution systems have simple topologies, 
we can remark that delimiting similar size of load groups 
will make the bad data detection capabilities of the 
estimator uniform in the network. Moreover, the 
minimization of the state uncertainty explained in the 
previous section will also probably increase the bad data 
detection capabilities of the estimator. 

Network configuration error identification 
Network configuration errors can occur when the 
telemetered status of a tie switch is wrong, or when the 
switch status is not updated by the dispatcher after several 
manual operations. 
Performing state estimation with a wrong topology will 
certainly result in a biased result. It could also result in high 
residuals, which can be detected with a chi square test, if the 
measurement set is well designed. In worst cases, the 
estimator will not detect a problem or not converge. 
To detect topology errors, the transmission system 
approach, which consists to analyse the residual 
characteristics to pinpoint the switch in error, is not realistic 
in distribution because of the lower measurement 
redundancy. 
A more suitable approach for distribution, although more 
time consuming, was proposed in [3]. It consists to test all 
the switches in doubt in different state estimation and keep 
the topology that result in the state estimation with the 
lowest cost function. If no topology results in low residuals, 
we can safely assume that there is a bad data with the base 
topology. 
In any case, for the topology processing to be effective, the 
accuracy on flow estimates at the level of switches in doubt 
must be relatively high, which is function of the 
measurement set. Therefore, either the load forecasts must 
be accurate, or flow measurements must be placed relatively 
close to the switches that may be in doubt. This is thus 
another concern for the measurement placement. 
We remark however that the topology error identification 
methods will not work with low loading: if the actual flow 
through a closed switch is close to zero, assuming it open 
will give also a state estimation with low residuals.  
Given the limitation of those methods, if the switch changes 
often of state, monitoring its status directly is of course a 
good alternative. 
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Convergence 
Convergence of state estimation, which is a nonlinear 
optimization problem, is not guaranteed. It can be 
negatively affected by some factors that may be avoided. It 
was explained in [4] that nondirectionnal measurements 
such as current magnitude may cause convergence problems 
if the flow direction in uncertain. This can be caused 
typically because of a loop topology or distributed 
generation. Similar problems can occur if the power factor 
is very uncertain, for instance because the status of some 
capacitor banks is unknown. Therefore, if the flow direction 
is generally unknown, directional measurements should be 
used.  

Robustness 
Finally the robustness to a meter loss because of a device 
failure or a communication failure can be evaluated with the 
criteria presented above when one measurement is discarded 
from the measurement set (sort of N-1).  

ILLUSTRATIVE EXAMPLES 

State uncertainty 
To illustrate the measurement placement impact on the state 
uncertainty, a simulated network is considered with two 
different measurement sets. 
The single line diagram of the medium voltage (20kV) 
distribution test system is shown on Fig. 1.  The network is 
composed of 8.55 km of underground cables and 14.2 km of 
overhead lines. The total loading of the feeder is 7.1 MVA. 
On each node a load is connected (with consumptions 
varying between 0.1 and 1MW). Three distributed 
generators are present; DG3 is generating 0.1MW and the 
two others 2.5MW. 

 
Figure 1 State of the network with measurement devices 
shown (set 1) 
To present the state of the network and its uncertainty, a 
third dimension on a map of the network is added. The third 
dimension can be used to plot the network state, the 
residuals, the state uncertainty or to point out leverage point 
or critical measurements. For clarity, we choose to represent 
the third dimension with colours. Such visualization should 
be used as complement to tabular outputs and will ease the 
comparison of different measurement placement strategies. 
In the next examples, state estimation was performed with 

measurements obtained from a load flow solution. Since we 
consider error-free measurements, the two measurement sets 
give the same state estimate. The flow repartition is shown 
on Fig. 1, where each line is coloured as a function of the 
power flow. Colouring the nodes with the voltage 
magnitude estimates or voltage standard deviation can be 
also performed, but is not shown here. 
The state uncertainty is strongly impacted by the standard 
deviation of the measurements. 
In these estimations, the assumed standard deviations of the 
load models are set to 1/3 of the average load (one load 
model is available for each node). The standard deviations 
of the distributed generators models are set to 10% of the 
mean generation. Lastly, the standard deviations of the 
actual measurements (voltage and power) are set to 1% of 
the measured values. 

  
Figure 2 Uncertainty of the power flows with first 
measurement set (set 1) 

 
Figure 3 Uncertainty of the power flows with one power 
meter location changed (set 2) 
The standard deviations of the flows estimates with the first 
measurement set (two voltage and five power 
measurements, plus load and DG models) are shown on Fig. 
2.  
We can clearly see that the uncertainty about the flow 
estimate is very low on line segments with power meters; 
then the uncertainty increases due to the uncertain load or 
DG injection. At the ending sections of the feeder, the 
uncertainty is approximately equal to the load (or DG) 
uncertainty connected at the terminal node. 
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When changing the location of one power meter (set 2), the 
flow uncertainty is changed, see Fig. 3. In this case, the flow 
uncertainty is more uniform in the network and is probably 
a better solution concerning the accuracy criterion.  
The uncertainty about the voltage estimate is nearly not 
affected by this change of power meter location. The 
voltage standard deviation is in fact nearly uniform in the 
network and is equal to 007.02%1 = pu (1% of voltage 
measurement standard deviation with two measurement 
device). 
From our experience with the use of this visualization, we 
observed that:  

• Additional voltage measurements decrease the 
voltage uncertainty everywhere in the network.  

• Additional flow measurements decrease the power 
flow uncertainty in neighbouring line segments. 
The uncertainty on the flow repartition away from 
the measurements is mainly function of the load 
forecast uncertainty. 

• Because the lines impedances are relatively low in 
distribution, the coupling is low between the 
voltage and the power uncertainties: additional 
voltage measurements have little effect on the 
power flow uncertainties and vice-versa.  

Bad data detection and identification capabilities 
To illustrate the bad data detection and identification 
capabilities of the different measurement sets, DG1 (see 
Fig. 1), actually generating 2.5MW, is assumed to be 
disconnected when performing state estimation. The 
resulting cost function and largest normalized residual 
(LNR) for both measurement sets are show on table 1. 
 

 Set 1 Set 2 
Cost function  354 720 
LNR 12 17 

Table 1 Bad data indicators when a DG is assumed to be 
disconnected while it is not 
In both cases, the normalized residuals indicate as bad 
(normalized residual > 3) the loads delimited by the series 
measurements in the same load group of DG1. It is thus not 
possible to identify exactly which load is bad. 
We can see that set 2 is more sensitive to this bad data than 
set 1, because the cost increases more and that the number 
of suspected loads is lower.  
However, set 2 will perform better to detect some other 
types of bad data. A measure of the bad data detection 
capabilities could be done by the calculation the leverage 
point measurements.  
Simple meter design rules can make the estimator more 
robust to bad data, this is explained below.  

CONCLUSION 
This paper discusses the different criteria that must be 
considered for the measurement design in distribution state 
estimation. These criteria are: cost, accuracy of the state 
estimate, bad data detection and identification capabilities, 

abilities of network configuration error detection, and 
robustness of the algorithm in convergence and to a meter 
loss.  
The illustrations clearly showed the gain of accuracy when 
better measurement devices locations are used. The 
visualization tool could be used as a basis of justification 
for the installation of additional measurement devices and 
help the user during the selection of the new measurement 
device locations. Adding user interactivity would be a good 
improvement to this tool. 
Because distribution networks have simple topologies 
(weakly meshed), we think that measurement placement 
strategies close to be optimal can be obtained with simple 
heuristic rules:  

• From the visualization of the state estimation 
accuracy, the user can place voltage measurement 
where the voltage deviation is too high.  

• For the power flows, a similar rule can be used. 
But for simple topologies, the placement of the 
flow measurements so that they delimit similar 
amount of load will give very good results. It was 
also suggested in [5].  

• Use directional measurements (power instead of 
current) when the flow direction is a priori 
unknown. 

• Monitor the injection of big and intermittent 
distributed generation units. 

• Place power meters close to tie switches to ease 
the monitoring of their status. 

We can remark that the two first rules will also increase the 
bad data detection capabilities. 
As concluding remark, there is a real benefit for the 
operator to have accurate load models because it will 
improve all the state estimation functions, those can be 
improved for instance from measurement campaigns.  
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