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ABSTRACT 

This paper presents a high impedance fault (HIF) location 
method in distribution systems. The estimation of the HIF 
location is carried out by using an artificial neural network 
(ANN). The ANN inputs are both three phase currents and 
its energy of the Wavelet Coefficients obtained during the 
HIF. The Wavelet mother function used was Daubechies 48. 
The ANN was trained and the performance of the proposed 
HIF location was evaluated by using a HIF modeled with 
two series time-varying resistances controlled by the 
Transient Analysis of Control Systems (TACS) of the 
Alternative Transient Program (ATP). Actual data obtained 
from several staged HIFs in different soil types on Energisa 
utility (a Brazilian distribution system) were used to adjust 
the HIF model. 

INTRODUCTION 

High impedance faults in distribution lines are short-circuits 
that cannot be easily detected, located and cleared by 
conventional protective devices due to their low fault 
current magnitudes. This kind of fault occurs when an 
energized conductor of the primary network falls in a 
surface with high resistive value, as well as trees or sand. 
When a HIF happens, energized conductors may fall within 
reach of personnel and, as the arcing often accompanies 
these faults, it further poses a fire hazard [1]. As a 
consequence, the energized conductor on the ground surface 
can pose public danger, as well as risk of fire due to the 
probable arc ignition. The damage derived from HIF 
concerns people, animals, and properties rather than 
electrical equipment of the network [2]. 
 
The difficulty of detecting HIFs is determined by the 
configuration of the distribution network and by the loads 
connected to the system. A reliable HIF diagnosis is 
essential to avoid dangerous consequences for both people 
and power system equipment. In order to reach success in 
these purposes, a method should be developed and 
evaluated with actual and simulated data, in which are 
necessary an accurate system modeling, and a HIF model 
which represents typical characteristics observed in actual 
HIFs, such as: buildup, shoulder, nonlinearity, and 
asymmetry. 
 

A brief review of the fault location techniques can be found 
in [3]. Recently, several works have been done for fault 
diagnosis in distribution systems. Some of them are based 
on conventional methods [4], monitoring of voltage 
imbalances [5], traveling waves [6]. The latest techniques 
involve the use of ANNs [7, 8] and Wavelet Transform 
(WT) [9]. The ANNs present high capacity for learning and 
generalization, besides velocity and robustness in the 
diagnosis. 
 
In order to adjust the HIF model with a typical HIF on 
Energisa utility, a Brazilian distribution system, as well as 
develop and evaluate the proposed HIF location method, 
several HIF experiments were staged, taking into account 
dry and wet contact surfaces: grass, crushed stone, sand, 
pavement, and local soil. The current and voltage 
waveforms in each stage were captured by digital fault 
recorders (DFRs) at both HIF location and far from 1 and 
11 km. The HIF simulations were carried out on ATP [10] 
by using the power system model of the Energisa utility 
where the HIFs were staged. 
 
The HIF locator is based on ANN where the input database 
was built with the post-fault current with its energy of the 
Wavelet Coefficients. The Neural Network Toolbox from 
MATLAB® was used for ANN construction and 
knowledge. Good results were obtained at HIF location 
evaluation. 

FIELD EXPERIMENTS SUMMARY 

In order to collect HIF data to assist the development of HIF 
modeling and database building, staged fault tests were 
performed on a distribution feeder at Energisa, in Boa Vista 
town. Fig. 1 depicts the structure built for the tests, whose 
main features were: 
• HIF tests were done on seven different kinds of contact 

surfaces: grass, crushed stone, pavement, asphalt, sand, 
tree and local soil; 

• A two-meter transition pole was placed between the 
common pole and the fault point, where the potential 
and current transformers were installed; 

• A 13.8 kV conductor coming from the common pole 
was connected to the transition pole and to an 
insulating rod; 

• An insulating scaffold was placed in order to enable 
security for the responsible technician; 

• Isolation and signalizing of the testing area; 
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• A 15360 Hz sampling frequency DFR was installed at 
the fault point and configured in order to enable the 
measurement, recording, and viewing of the events to 
be generated in the tests; 

• Other DFRs were installed far 1 and 11 km from the 
fault point.  

 
Fig. 1 – Structure to stage HIF. 

HIF MODELING 

In order to choose a HIF model, the characteristics of the 
phenomenon must be represented adequately. Although 
these methods represent the nonlinear and the asymmetry 
characteristics of HIFs well, they do not embrace the other 
characteristics, such as buildup, shoulder, and intermittence 
[12]. This work used the model proposed by [11], which 
simulates the characteristics by employing two time-varying 
resistances controlled by TACS in ATP. 
 
In this model, the first resistance (R1) represents the 
characteristics of nonlinearity and asymmetry (it has the 
same characteristics at every cycle of the signal), while the 
second resistance (R2) represents the characteristics of 
buildup and shoulder (it only has influence at the beginning 
of the signal). In order to obtain R1 and R2behaviour, 32 
points for the V-I characteristic (obtained from voltage and 
current waveforms) for one cycle in the steady state were 
considered (Fig.2). 

 
Fig. 2 –The voltage-current characteristic curve for one 

cycle in the steady state of HIF on the local soil. 

If the faulted branch voltage is in ( ) 1nn vtvv +<≤ , the 
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The resistance R1 will be estimated by Law of Ohm using 
v(t) and i(t). The resistance R2 is calculated considering only 
the maximum absolute value of voltage and current because 
the buildup and shoulder characteristics. The steps to 
compute R1 and R2 are as follows: 
1. Obtain the total resistance R(τ) by dividing v(τ) by i(τ); 
2. Obtain R2(τ) by subtracting R1(τ) from R(τ); 
3. Obtain R2 applying the method of least squares. 

SIMULATIONS 

Database Building 
A variety of situations were considered to form a set of 180 
different test cases for sand as contact surface used in the 
experiments. The simulation variables chosen are 
summarized in the Table I. HIF between one phase and 
ground were simulated [11]. 
 

TABLE I – Simulation Variables 

Simulation variables Test set 

Load condition (%) 25, 50, 75, 100 

Fault location (Bus) 10, 23, 30, 35, 44, 49, 50, 56, 63 

Fault location (km) 5.76, 14.86, 15.96, 18.56, 9.86, 
11.66, 4.56, 10.26, 17.06 

Inception angle (°) 88, 89, 90, 91, 92 

Contact surface Sand 

System Modeling 
The proposed method was developed in order to be used in 
a real 13.8kV distribution feeder of Energisa. To make the 
modeling, the utility provided data about the chosen feeder, 
such as: the power of transformers, the wire and poles 
characteristics, the distances between line sections, and the 
loads. The feeder is illustrated in the Fig. 3. 
 

 
Fig. 3 – The modeled distribution feeder. 
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In order to model the system, some considerations were 
necessary. For instance, the distribution feeder was modeled 
and simulated by using the ATP. The skin adopted was 0.33 
and the ground resistivity 350 Ω.m. A constant impedance 
load model has been adopted with a power factor of 0.955, a 
distributed parameters model has been used to all line 
sections composed by 4 AWG wires. The loads were 
concentrated into 90 buses. 

APPLYING THE WAVELET TRANSFORM 

It is well known that currents with HIF are non-stationary 
signals. Therefore, a suitable way to extract information 
regarding the frequency contents of HIF currents is to apply 
the discrete Wavelet Transform (DWT). By using the 
Wavelet Transform the non-stationary signals are analysed 
within different frequency ranges by means of dilating and 
translating of a single function named mother wavelet [13]. 
According to Mallat's algorithm, the DWT uses high-pass 
(h) and low-pass (g) filters to divide the frequency-band of 
the input signal into high- and low frequency components 
(wavelet and scaling coefficients). This operation may be 
repeated recursively, feeding the down-sampled low-pass 
filter output into another identical filter pair, decomposing 
the signal into scaling (s) and wavelet (w) coefficients for 
various scales. 
 
The major drawback of non-redundant transforms such as 
the DWT is their non-invariance in time and space [14]. In 
this way, the detection and location of HIF is carried out 
through the Maximal Overlap Discrete Wavelet Transform 
(MODWT), a time invariant transformation, where scaling 
and wavelet coefficients are obtained in similar way as the 
DWT. 
 
The coefficients of the scale g and wavelet h filters are 
associated with the selected mother wavelet. With regard to 
the HIF location, it was verified that long mother wavelets 
provided an accurate identification of the fault point. 
Therefore, the wavelet Daubechies with 48 filter 
coefficients (db48) was used in this paper.  
 
According to the Parseval theorem, the energy of a signal 
can be decomposed in terms of the energy of both wavelet 
and scaling coefficients at the first scale [15], as follows: 
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coefficient energy. 
 
Some features of the transients of HIF can be identified 
through the analysis of their energy. The signal energy can 
be decomposed in terms of the wavelet and scaling 
coefficient energies at the first scale, the features of the 

transients can be identified through the analysis of the 
wavelet coefficient energies at this scale, when the wavelet 
coefficients are predominantly influenced by frequency 
components regarding the transients. 
 
The one-cycle wavelet coefficient energy (ε) of a signal 
(voltage or current), at the first scale, can be computed as 
follows: 
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since k ≥ ∆k; ∆k is the amount of coefficients in one of the 
fundamental power frequency. The one-cycle wavelet 
coefficient energies of MODWT of the HIF currents were 
evaluated in this paper for HIF location.  

HIF LOCATOR 

Among the existing architecture types for ANNs, the multi-
layer perceptron network (MLP) was selected because of its 
simplicity and adequacy to solve properly the fault location 
problem. The resilient back propagation (RPROP) 
algorithm was used for ANN training [16]. In this case, the 
neuron weights are calculated by means of the partial 
derivative sign in each iteration, improving the learning 
process. The Neural Network Toolbox of MATLAB® was 
used for all ANN operations and development. 
 
According to [17], the energy of wavelet coefficients 
characterize strong indicators for disturbances diagnosis. 
This reasoning was extended to HIF. Thus, the input 
database chosen for the selected ANN were the normalized 
post-fault current and the normalized wavelet coefficients 
energy of the current for the phase with fault. Thus, there 
was obtained an idea of the current behavior in time domain 
with post-fault current samples; well as the incidence of 
transient, with the advent of energy. 
 
In the pre-processing step, 80% of the database were chosen 
for ANN learning, in which 70% were used in training set 
and 30% were used in validation set. The remaining 20% of 
the database were designated for the methodology test. For 
training network, each input database variable was grouped 
in three samples, in a process known as windowing. Thus, 
the necessary number of inputs for the used ANN was 12 (4 
variables for 3 samples). The activation function for input 
layer was logarithmic. It was also chosen the hidden layer 
adoption, whose activation function was hyperbolic tangent. 
With regarding the training process, a maximum of 30000 
epochs was used to achieve the minimum root mean square 
(RMS) error. However, in the best result, the training 
process was stopped with 5221 epochs with an error of 
0.0173. The architecture 12-50-20-1 presented the best 
result. 
 
The test set was divided in files with registers with 
COMTRADE standard, in which all current energies were 
computed and submitted to the ANN. The most frequent 
location estimated by the ANN for each file is the 
normalized HIF location.  
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A success rate of 93% for the HIF location were obtained in 
the test set, providing the correct identification of the 
protection zone on which the HIF occurred.  

CONCLUSION 

A distinctive importance of the proposed method was the 
staged faults in a real distribution feeder, with a field tests 
build. The work was performed by both simulated and 
actual data. 
 
The adoption of wavelet coefficients energy for the current 
with fault was satisfactory. The used Wavelet was 
Daubechies 48 (db48). 
 
A success rate of 93% in high impedance fault location was 
achieved. The obtained results for high impedance fault 
location based on artificial neural network attest the 
efficiency and effectiveness of the proposed method. 
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