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ABSTRACT

This paper presents a high impedance fault (HIF) location
method in distribution systems. The estimation of the HIF
locationiscarried out by using an artificial neural network
(ANN). The ANN inputs are both three phase currents and
its energy of the Wavelet Coefficients obtained during the
HIF. The Wavel et mother function used was Daubechies48.
The ANN was trained and the performance of the proposed
HIF location was evaluated by using a HIF modeled with
two series time-varying resistances controlled by the
Transient Analysis of Control Systems (TACS) of the
Alternative Transient Program (ATP). Actual data obtained
fromseveral staged HIFsin different soil typeson Energisa
utility (a Brazlian distribution system) were used to adjust
the HIF model.

INTRODUCTION

High impedance faults in distribution lines arerstoircuits
that cannot be easily detected, located and clebyed
conventional protective devices due to their lowltfa
current magnitudes. This kind of fault occurs wtemn
energized conductor of the primary network fallsan
surface with high resistive value, as well as tr@esand.
When a HIF happens, energized conductors may idlirw
reach of personnel and, as the arcing often accoiepa
these faults, it further poses a fire hazard [1§ &
consequence, the energized conductor on the geaufate
can pose public danger, as well as risk of fire tuthe
probable arc ignition. The damage derived from HIF
concerns people, animals, and properties rathen tha
electrical equipment of the network [2].

The difficulty of detecting HIFs is determined blyet
configuration of the distribution network and by tloads
connected to the system. A reliable HIF diagnosis i
essential to avoid dangerous consequences foipleotble
and power system equipment. In order to reach ssdoe

these purposes, a method should be developed and

evaluated with actual and simulated data, in whach
necessary an accurate system modeling, and a Hi#leImo
which represents typical characteristics obseraeattual
HIFs, such as: buildup, shoulder, nonlinearity, and
asymmetry.
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A brief review of the fault location techniques d¢snfound

in [3]. Recently, several works have been donefdit
diagnosis in distribution systems. Some of thembased
on conventional methods [4], monitoring of voltage
imbalances [5], traveling waves [6]. The lateshtéques
involve the use of ANNs [7, 8] and Wavelet Transfor
(WT) [9]. The ANNSs present high capacity for leangnand
generalization, besides velocity and robustnesghin
diagnosis.

In order to adjust the HIF model with a typical HbR
Energisa utility, a Brazilian distribution systeas well as
develop and evaluate the proposed HIF location oggth
several HIF experiments were staged, taking intmaat
dry and wet contact surfaces: grass, crushed ssamel,
pavement, and local soil. The current and voltage
waveforms in each stage were captured by digitalt fa
recorders (DFRs) at both HIF location and far frbmnd
11 km. The HIF simulations were carried out on AT6]
by using the power system model of the Energidéyuti
where the HIFs were staged.

The HIF locator is based on ANN where the inpuatate
was built with the post-fault current with its eggrnof the
Wavelet Coefficients. The Neural Network Toolboarfr
MATLAB® was used for ANN construction and
knowledge. Good results were obtained at HIF locati
evaluation.

FIELD EXPERIMENTS SUMMARY

In order to collect HIF data to assist the develeptof HIF
modeling and database building, staged fault test®
performed on a distribution feeder at Energis&da Vista
town. Fig. 1 depicts the structure built for thetée whose
main features were:

» HIF tests were done on seven different kinds ofaxin
surfaces: grass, crushed stone, pavement, asamalt,
tree and local soil;

A two-meter transition pole was placed between the
common pole and the fault point, where the poténtia
and current transformers were installed;

* A 13.8 kV conductor coming from the common pole
was connected to the transition pole and to an
insulating rod;

e An insulating scaffold was placed in order to epabl
security for the responsible technician;

» Isolation and signalizing of the testing area;
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* A 15360 Hz sampling frequency DFR was installed at If the faulted branch voltage is \‘ynsv(t)<vn+l, the
the fault point and configured in order to enalble t  5rresponding current is obtained by:
measurement, recording, and viewing of the events t C
be generated in the tests; i) =i, + -2 (fy(t)-v, ) (1)
*  Other DFRs were installed far 1 and 11 km from the Vi1 " Vn
fault point.

The resistanc®&; will be estimated by Law of Ohm using
v(t) andi(t). The resistand®; is calculated considering only
the maximum absolute value of voltage and currecabse
the buildup and shoulder characteristics. The steps
computeR; andR; are as follows:

1. Obtain the total resistan&¥z) by dividingv(z) byi(z);

2. ObtainRy(z) by subtractindy(z) from R(z);

3. ObtainR; applying the method of least squares.

SIMULATIONS

Database Building

A variety of situations were considered to fornetaf 180
- = different test cases for sand as contact surfaee imsthe
Fig. 1 — Structure to stage HIF. experiments. The simulation variables chosen are

summarized in the Table I. HIF between one phask an
HIF MODELING ground were simulated [11].
In order to choose a HIF model, the characterigifdfie TABLE | — Simulation Variables
phenomenon must be represented adequately. Althougl™ ] ]
these methods represent the nonlinear and the astyynom ~ Simulation variables Test set
characteristics of HIFs well, they do not embrdeedther
characteristics, such as buildup, shoulder, awrdrittence Load condition (% 25 50 75. 100
[12]. This work used the model proposed by [11]jchh ftion (%) R
simulates the characteristics by employing two tirmeying )
resistances controlled by TACS in ATP. Fault location (Bus) 10, 23, 30, 35, 44, 49, 50, 56, 63
In this model, the first resistancéy] represents the Fault location (km) 5.76, 14.86, 15.96, 18.56, 9.86,

characteristics of nonlinearity and asymmetry @ lihe 11.66, 4.56, 10.26, 17.06
same characteristics at every cycle of the signdiie the . o

second resistanceR{) represents the characteristics of Inception angle?) 88, 89, 90, 91, 92
buildup and shoulder (it only has influence atlbginning
of the signal). In order to obtalR, and R,behaviour, 32 Contact surface Sand
points for the V-I characteristic (obtained fromtage and

current waveforms) for one cycle in the steadyestatre ,
considered (Fig.2). System Modeling

X170 The proposed method was developed in order todetins
a real 13.8kV distribution feeder of Energisa. Takenthe
modeling, the utility provided data about the chofeeder,
such as: the power of transformers, the wire anéspo
characteristics, the distances between line sextand the
loads. The feeder is illustrated in the Fig. 3.
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Fig. 2 —The voltage-current characteristic curvedioe Fig. 3 — The modeled distribution feeder.
cycle in the steady state of HIF on the local sail.
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In order to model the system, some consideratiosie w
necessary. For instance, the distribution feedemadeled
and simulated by using the ATP. The skin adoptesioag3
and the ground resistivity 3%0.m. A constant impedance
load model has been adopted with a power facto0&b, a
distributed parameters model has been used tanall |
sections composed by 4 AWG wires. The loads were
concentrated into 90 buses.

APPLYING THE WAVELET TRANSFORM

It is well known that currents with HIF are nonigiaary
signals. Therefore, a suitable way to extract mfation
regarding the frequency contents of HIF currenis &oply
the discrete Wavelet Transform (DWT). By using the
Wavelet Transform the non-stationary signals aedysed
within different frequency ranges by means of dilgiand
translating of a single function named mother watvgl3].
According to Mallat's algorithm, the DWT uses higgiss
(h) and low-passg) filters to divide the frequency-band of
the input signal into high- and low frequency comgats
(wavelet and scaling coefficients). This operatioay be
repeated recursively, feeding the down-sampledgass
filter output into another identical filter pairedomposing
the signal into scalings( and waveletw) coefficients for
various scales.

The major drawback of non-redundant transforms ssch
the DWT is their non-invariance in time and spdcg [In
this way, the detection and location of HIF is @atrout
through the Maximal Overlap Discrete Wavelet Transt
(MODWT), a time invariant transformation, where Istg
and wavelet coefficients are obtained in similayaa the
DWT.

The coefficients of the scalg and waveleh filters are
associated with the selected mother wavelet. Veéglard to
the HIF location, it was verified that long mothesvelets
provided an accurate identification of the faultirpo
Therefore, the wavelet Daubechies with 48 filter
coefficients (db48) was used in this paper.

According to the Parseval theorem, the energy Sfaal
can be decomposed in terms of the energy of botelet
and scaling coefficients at the first scale [15]f@lows:

k k k
S = Y [kl + 3 [s(kfe

k=1 k=1 k=1

()

k k

t t
Where: Y’ |v(k)|2 is the energy of the current |W(k)|2
k=1 k=1
kt
the wavelet coefficient energy angd, |s(k)|2 the scaling
k=1
coefficient energy.

Some features of the transients of HIF can be identified

transients can be identified through the analysis of the
wavelet coefficient energies at this scale, when the wavelet
coefficients are predominantly influenced by frequency

components regarding the transients.

The one-cycle wavelet coefficient energy 6f a signal
(voltage or current), at the first scale, can be computed as
follows:
k
g(k)= > w(n)

n=k-Ak+1

®)

since k> Ak; Ak is the amount of coefficients in one of the
fundamental power frequency. The one-cycle wavelet
coefficient energies of MODWT of the HIF currents were
evaluated in this paper for HIF location.

HIF LOCATOR

Among the existing architecture types for ANNs, the multi-
layer perceptron network (MLP) was selected because of its
simplicity and adequacy to solve properly the fault location
problem. The resilient back propagation (RPROP)
algorithm was used for ANN training [16]. In this case, th
neuron weights are calculated by means of the partial
derivative sign in each iteration, improving the learning
process. Théleural Network Toolbox of MATLAB® was

used for all ANN operations and development.

According to [17], the energy of wavelet coefficients
characterize strong indicators for disturbances diagnosis.
This reasoning was extended to HIF. Thus, the input
database chosen for the selected ANN were the normalized
post-fault current and the normalized wavelet coefficients
energy of the current for the phase with fault. Thus, there
was obtained an idea of the current behavior in time domain
with post-fault current samples; well as the incidence of
transient, with the advent of energy.

In the pre-processing step, 80% of the database wesercho
for ANN learning, in which 70% were used in training set
and 30% were used in validation set. The remaining 20% of
the database were designated for the methodology test. For
training network, each input database variable was grouped
in three samples, in a process known as windowing. Thus,
the necessary number of inputs for the used ANN was 12 (4
variables for 3 samples). The activation function for input
layer was logarithmic. It was also chosen the hidden layer
adoption, whose activation function was hyperbolic tahge
With regarding the training process, a maximum of 30000
epochs was used to achieve the minimum root mean square
(RMS) error. However, in the best result, the training
process was stopped with 5221 epochs with an error of
0.0173. The architecture 12-50-20-1 presented the best
result.

The test set was divided in files with registers with
COMTRADE standard, in which all current energies were
computed and submitted to the ANN. The most frequent
location estimated by the ANN for each file is the

through the analysis of their energy. The signal energy can normalized HIF location.

be decomposed in terms of the wavelet and scaling
coefficient energies at the first scale, the features of the
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A success rate of 93% for the HIF location were obtained in
the test set, providing the correct identification of the
protection zone on which the HIF occurred.

CONCLUSION

A distinctive importance of the proposed method was the
staged faults in a real distribution feeder, with a field tests
build. The work was performed by both simulated and
actual data.

The adoption of wavelet coefficients energy for the current
with fault was satisfactory. The used Wavelet was
Daubechies 48 (db48).

A success rate of 93% in high impedance fault location was
achieved. The obtained results for high impedance fault
location based on artificial neural network attest the
efficiency and effectiveness of the proposed method.
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