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ABSTRACT 

Load allocations for distribution system analysis is one 
area in system modelling where simple, generalized 
assumptions are commonly made by distribution planners 
for lack of better data. Most of the time, the assumptions 
are based on measurements taken only at the distribution 
substation bus or at the feeder head. With widespread 
application of advanced metering infrastructure (AMI) 
technologies, loading estimates for distribution system 
analysis can now be based on actual measurements taken 
at individual loads. This can result in greatly improved 
accuracy in distribution power flow analysis. Three 
techniques for load allocation are analyzed and 
compared to the case with actual AMI data for all 
customers. Selected details of the test circuit and analysis 
process are provided. 

INTRODUCTION 

Analysis tools used for distribution systems have become 
very accurate in the representation of line models, 
regulators, load tapchangers, capacitor switching, etc. [1], 
[1] However, load estimation is often a weakness. 
Distribution system analysis tools typically allocate the 
load demand measured at the substation to individual 
customer meter points based on the kVA rating of the 
MV/LV transformer. Some programs also have 
algorithms for load allocation based on monthly kWh 
billing. With the advent of Advanced Metering 
Infrastructure (AMI) metering capable of capturing 
extensive demand interval data, new opportunities exist 
to improve customer loading estimates with distribution 
system analysis based on actual demand interval data. 
These improvements can have a significant impact on 
both distribution planning and real-time distribution state 
estimation.  
Efforts are currently underway to use the AMI demand 
interval data for both defining and verifying distribution 
system load models. Each load can be defined separately 
using its own measured loadshape, which should yield 
the most accurate simulations. Research has been 
performed on examining the use of AMI for modelling 
loads in distribution system analysis. [3], [4] This 
research was inspired by a study by Kersting and Phillips 
[5] and builds on that work by examining a larger circuit 
with nearly full AMI coverage. This paper provides some 
additional details of the simulations. 
The results of the load allocations using the actual AMI 
data are compared to simpler, or more traditional, load 
allocation methods. This example gives additional insight 
into the impact of load allocation assumptions on circuit 

power flow characteristics for distribution state 
estimation such as voltage profile, equipment evaluations, 
losses, and state of distribution equipment. 

MODELLING THE TEST CIRCUIT 

The analysis described in this paper compares power flow 
results using four different load allocation methods on the 
same circuit model. [3] The circuit was selected because 
it had 99% AMI coverage. The results for the load 
allocation method using AMI demand interval data were 
assumed to be the most accurate and serve as the 
reference against which the other load allocation methods 
are compared. The AMI demand interval data consists of 
15-minute kW demand readings over the period from 1 
June 2010 to 18 November 2010. 
The test circuit is a 13.2 kV residential feeder with only 
1% commercial load. There are 1779 individually-
metered customers. There are 10 3-phase loads; the 
remainder are singl-phase. The peak demand on the 
feeder is 5800 kW with a load factor of 46% (ratio of 
average load to peak demand). The feeder contains two 
capacitor banks, rated 450 and 900 kvar, switched under 
current control. 
This circuit was modelled using the EPRI OpenDSS 
program. One capability of this program that is useful for 
this analysis is that it can perform sequential power flow 
simulations efficiently. Each load can be assigned its own 
loadshape or all loads can be assigned the same 
loadshape. Both options were exploited in this analysis 
comparing different load allocation methods. This 
program was the main research tool used in a similar kind 
of analysis for distribution efficiency including nearly 80 
distribution feeders from the US and Europe reported 
previously. [6] 
All service transformers (MV/LV transformers) on the 
feeder were modelled. While US utilities use a split-
phase 120/240 V transformer, a simplified model was 
used for this analysis. Only one value – total kW – was 
available from the AMI data so it was not possible to 
accurately split the load between 120 V windings. 
Therefore, the transformers were modelled as simple two-
winding transformers with an LV voltage of 240V for 
single-phase loads. Each LV service drop was modelled 
using an average length of 31 m since detailed LV circuit 
data were not available. Due to the low service voltage, 
LV circuits in the US are relatively short compared to 
400 V LV circuits common in other parts of the world. 
They typically range in length from 15 to 45 m.   
Through many case studies of distribution feeders, we 
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have found it relatively easy to match the active power 
component of the power flow to measured results. Of 
course, the line and transformer impedances must be 
sufficiently accurate to account for the losses. It is often 
more difficult to calibrate the model to the measured 
reactive power flow, particularly on feeders in the US 
where it is common to have multiple switched power 
factor capacitor banks. Fortunately, it was straightforward 
to match the reactive power characteristic for the test 
circuit because it serves mostly residential loads. The 
power factor of each load was estimated to be 0.95 
lagging and was assumed to be invariant for the duration 
of the simulation. By switching on local current the 
capacitor switching occurs quite naturally in the 
simulation. Simulation difficulties with reactive power 
can arise when capacitors are controlled remotely or by 
less deterministic quantities. 
With a full 3-phase circuit model, all MV/LV 
transformers, and one LV line modelled for each of the 
metered loads, there are a total of 3107 electrical nodes in 
the test circuit. For the AMI case, there were 1779 unique 
loadshapes, each with 16416 intervals. A full simulation 
requires approximately 4.5 min to execute on a typical 
Windows-based modern laptop computer. Thus, this type 
of analysis is not onerous when the data are available. 

LOAD ALLOCATION METHODS  

The load allocation methods used in this study were: 
 AMI Allocation – This is the reference method. 

It uses the actual kW demand interval 
measurements for each customer. Each customer 
has a unique loadshape.  
For each of the loads with AMI, the 15-minute 
average kW measurements were used directly to 
define the demand value for each interval of the 
simulation. The unmetered load values (1% of the 
total load points) were estimated from the 
substation kW measurements while compensating 
for system losses.   

 Transformer kVA Allocation – This technique 
is commonly used when better data are 
unavailable. It uses the total feeder load 
measurements taken at the feeder head and then 
allocates a portion to each load point based on the 
kVA rating of the service transformer. In the test 
circuit, a transformer often has multiple loads, 
individually metered. The load allocated to a 
transformer is allocated to the individual loads for 
the simulation. The loadshape assumed for each 
load is the same as the total feeder load. 

 Monthly Usage Allocation – This method uses 
the monthly kWh billing to allocate loads to each 
of the customers and then uses the substation load 
measurements develop a loadshape that is 
assigned to all loads. Each customer’s kW 

demand allocation was updated for each month in 
the simulation. This would be similar to a 
technique that allocates loads based on a 
customer’s billing information from the previous 
year. The substation load is allocated to each 
customer in proportion to the specified monthly – 
or other period – kWh usage. This technique 
distributes the kW loading more heavily to those 
customers using more energy regardless of 
service transformer size. One assumption inherent 
in this approach is that the heavier users will be 
the heavier users throughout the billing period, 
which is obviously not always true. 

 Class Loadshape Allocations – This is a method 
used in some distribution state estimation tools as 
well as distribution planning tools. It uses a 
combination of the transformer kVA size along 
with historical information about the type of load 
being served. The historical load type information 
consists of various class loadshapes for customers 
based on season of the year, day of week, and 
holidays. The class loadshape is used along with 
the measured substation demand data to develop 
the loading level for each load. Knowledge of the 
load class is required. 

RESULTS  

The four load allocation methods were compared for 
accuracy in the following three types of predictions: 
 

1. Prediction of equipment loading 
2. Prediction of service voltage magnitudes 
3. Prediction of losses 

Equipment Loading Evaluation 
Loading evaluations of power delivery equipment were 
conducted by comparing the load current ratings of each 
line and transformer with calculated operating conditions. 
The evaluation status for each component was flagged as 
a “exceeds normal rating” when the loading exceeded 
110% of user-defined normal limits. The evaluation 
status was flagged as “exceeds emergency rating” when 
loading exceeds 150% of user-defined normal limits. This 
allows the feeder operator to determine the extent of the 
overload and the location of the overloads on the system.  
The test circuit model showed overloads only with 
respect to the normal rating and all of the overloads 
occurred on MV/LV transformers. No overloads were 
reported on lines and cables.  
Table 1 shows the number of overloads identified with 
each allocation method. The reference method, the AMI 
simulation, reported a total of 51 instances of overloads. 
Of the other methods, the monthly usage allocation 
method reported 27 instances of overload, which was the 
closest to the AMI method. The substation allocation, the 
common method that allocates loads based on 
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transformer kVA rating, identified only 5 instances of 
overload. None of the overloaded transformers found 
with the kVA rating allocation method were found to be 
overloaded with the AMI simulation, which is assumed to 
be accurate. Not only are few overloads identified, but 
they are misidentified.  Note that in the kVA allocation 
model each customer was modeled separately; therefore, 
the loading on each transformer was proportioned to the 
total number of customers connected to it. 
 
Table 1. Number of transformers that exceeded their 
normal rating.   
 
Number of Transformers Identified that Exceeded their 

Normal Rating 

AMI kVA rating Monthly Usage 
Allocation 

Class 
Loadshapes  

51 5 27 4

 
In addition to identifying transformer overloads, the AMI 
metering data can also be used to better optimize 
transformer asset utililization. Table 2 shows the 
transformer loading at the feeder peak. 71% of the 
transformers are loaded less than 50%. This information 
could allow system planners to better match transformer 
sizes to loads and reduce no-load, or idling, losses. 
 
Table 2. Transformer loading at feeder peak with AMI 
allocation. 
 

Transformer Loading at feeder peak with AMI 
Allocation 

<25% >25% and 
<50% 

>50% and 
<75% 

>75% 
and 

<100% 
>100% 

34% 37% 19% 7% 3% 

 

Voltage Estimation 
Distribution state estimation and voltage optimization 
both require better estimates of the feeder voltage at 
various times of the day. 
Table 3 shows the minimum service voltage for all 
customers in the circuit at the time of peak loading. The 
Monthly Usage Allocation comes closest to the voltages 
predicted by using AMI data. The minimum voltage 
predicted by the kVA rating allocation is high by 
approximately 2 out of 120 V, or 1.7%. On average, the 
minimum voltage levels are nearly the same for all the 
allocation methods. Rather than providing a basis for a 
conclusion on voltage drop, this is more a result of the 
test circuit having relatively little average voltage drop. 
Figure 1 displays a time-series simulation of the voltage 
at the substation bus. The voltages computed for all four 

cases match closely; however, only the AMI model 
causes the capacitor bank farthest downstream to change 
state due to current exceeding the ON setting. This can 
become a critical modeling issue when performing 
distribution state estimation. 
 
Table 3. Minimum customer voltage at feeder peak 
demand.   
 

Minimum Customer Voltage At Peak 

AMI kVA rating Monthly Usage 
Allocation 

Class 
Loadshapes  

119.95 121.85 119.86 121.40

 

 
Figure 1. Voltage Computed at the Substation Bus for 
All Cases.  
 

Loss Estimates 
Loss estimates produced by distribution system analysis 
are sensitive to the assumed load distribution throughout 
the feeder. 
The AMI and Monthly Allocation methods yielded more 
average losses than the Substation and Class Allocation 
methods. Both the LV (secondary) and MV (primary) 
systems showed more losses in these two cases, which is 
shown in Figure 2. The AMI and Monthly Usage 
methods each have the same MV line losses; however, 
the Monthly Usage case shows more LV losses. 
All cases showed approximately the same annual no-load 
losses due primarily to the fact that there was very little 
voltage drop on this circuit. Thus, the voltages across the 
service transformers are approximately the same 
throughout the simulation period. 
As for peak losses, the AMI and the Monthly Usage 
methods again predict higher losses. The AMI method 
predicts 10% more losses on both the LV and the MV 
than the traditional Transformer kVA Allocation method. 
Again, as in the average case, the AMI and Monthly 
Usage methods have the same MV line losses; however, 
the Monthly Usage case has more LV losses. 
An accurate representation of the LV losses is 
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particularly important for those circuits with long LV 
lines such as are often encountered in European 
distribution systems. 
 

 
Figure 2. Annual MV and LV Losses. 
 

 
 
Figure 3. Peak MV and LV Losses. 

CONCLUSIONS 

The method that is used for estimating the customer load 
can have a significant impact on distribution system 
analysis. Some of the general conclusions derived from 
this example include:  
 

 Loading data from the application of advanced 
metering infrastructure (AMI) will provide 
distribution planners with greatly improved 
predictions of actual system performance, 
assuming analysis tools are available that can 
process the data. 

 Methods such as allocating based on service 
transformer kVA rating, not only under-report 
overloads but can also mis-report overloads. 
Typically, a kVA allocation only includes a 
single load at each transformer location and all 
transformers initially are assigned the same 
percentage of loading. Few, or no, transformer 

overloads are reported because all transformers 
have the same percentage of loading. The test 
circuit actually resulted in a few transformer 
overloads due to the way load was allocated for 
transformers with numerous loads. However, the 
predicted overloads did not correlate with the 
transformers found to be overloaded from the 
AMI data. 

 The under loading of transformers can be 
identified with proper load allocation and 
transformer sizes may be optimized. 

 The AMI and Monthly Usage methods result in 
nearly the same MV line losses, because the 
assumed load distribution is approximately the 
same. This suggests that if AMI data were 
lacking, the Monthly Usage method would be 
better than the other methods. 

 The Monthly Usage Allocation method tracks the 
voltage predicted by AMI data more closely than 
the other allocation methods. 

 The use of AMI data can give a better indication 
of the state of controlled system components such 
as capacitors. 

 General conclusions about the Class Loadshape 
allocation method cannot be drawn from this 
example because 99% of the loads were 
residential.  
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