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ABSTRACT 

The smart grid concept introduces improved possibilities 

for coordinated distribution grid management in order to 

increase the receptivity for Renewable Energy Sources 

while simultaneously guaranteeing a safe and reliable grid 

operation. This paper presents a smart grid control strategy 

for real-time low voltage (LV) grid management 

applications based on an online-learning algorithm. It 

enables for the derivation of a schedule-forecast for 

installed assets. Next to coordinated voltage and line 

utilization control the approach optimally exploits the 

potential benefits of innovative grid assets for grid 

operation. The performance of the algorithm is 

demonstrated by a simulation study using a typical LV grid.  

INTRODUCTION 

A constantly growing penetration of decentralized 
generation in distribution grids is causing a massive need 
for upgrading of low and medium voltage grids in Germany 
[1]-[2]. Consequently, innovative approaches have to be 
exploited in order to reduce the cost for grid reinforcement 
as much as possible. Flexible customers / demand side 
management and innovative grid assets such as MV/LV 
transformers with on load tap changers (OLTC) offers such 
possibilities. 
The “Smart Operator” project1 aims at proving the 
feasibility of a centralized control approach to optimize the 
operation of low voltage grids. Simulation studies, 
laboratory testing and three field trials will be conducted in 
order to gain experience with the required primary 
equipment, information and communication technology 
(ICT) as well as mathematical optimization methods [3]. 
This paper presents a new online-learning optimization 

                                                           
1of RWE Deutschland AG, PSI AG, PSI Nentec GmbH, Horlemann 
Elektrobau GmbH, Hoppecke GmbH & Co. KG, Maschinenfabrik 
Reinhausen GmbH and Stiebel Eltron GmbH & Co. KG 

algorithm, which will be applied within the Smart Operator 
project. 

MANAGEMENT ALGORITHMS FOR 

DISTRIBUTION GRIDS 

Management algorithms and operation principles for smart 
distribution grids can be classified into centralized controls 
with ICT and decentralized grid management approaches. 
Examples for decentralized methods are controls like Q(U)–
control in PV-inverters.  
Centralized control paradigms make use of a large variety of 
active grid components – innovative grid assets as well as 
controllable generators, storage systems and demand side 
management (DSM). By means of ICT, well-defined 
coordination of all controllable assets and the use of 
forecasting-methods a nearly optimal grid operation can be 
reached [3]. However, required control algorithms have to 
be capable of handling the enormous complexity of such 
systems in order find the optimal solution for grid operation. 

Complexity and requirements of control strategies 

The complexity in the optimal operation of a low voltage 
grid on the one hand comes from the large number of assets 
and therefore from possibilities to respond to a certain 
problem. In a LV distribution grid equipped with multiple 
storage systems, OLTC transformers and DSM in every 
household, there are millions of possible (but not necessary 
reasonable) states in which the grid can be operated (named 
“system options” in this paper).  
Furthermore, such algorithms have to deal with highly 
stochastic behavior of load and generation within the grid. 
Storage-units increase the complexity by imposing the need 
to forecast the grid state for a certain period of time.  
With the focus on low voltage distribution grids the 
algorithm to be developed must be able to operate the wide 
range of LV distribution grids without the need for intensive 
adaptations. Urban areas with a high load density have to be 
controllable as well as rural areas with low load density and 
long feeders. 
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Due to the large number of grids and rather small 
installation space in a MV/LV station embedded systems 
with rather low computational power compared to a desktop 
computer has to be used.  

ONLINE LEARNING ALGORITHMS 

The aim within the “Smart Operator” project is to achieve 
optimal grid operation by the means of minimizing to 
voltage deviation and line utilization at all time. Thus, a 
mixed-integer, stochastical, non-linear and combinatorial 
programming problem arises. To face this problem different 
optimization methods are – in principle – suitable. 
Approaches like mixed-integer linear programming have a 
lack in computational time since the effort increases 
exponentially with the number of solutions. Therefore, those 
methods will be neglected. Heuristical methods like genetic 
algorithms cannot guarantee the globally optimal solution.  
A suitable alternative for a grid management are numeric-
iterative methods. The idea is to repeat the same 
computation step several times by using the solution of the 
former steps to converge to the optimum. One form of these 
kinds of algorithms is the randomized weighted majority 
(RWM) algorithm, which is discussed in detail in the 
following.  

Randomized Weighted Majority Algorithm 

The randomized weighted majority algorithm is 
recommended for repetitive decision problems with 
incomplete information and high number of possible 
solutions [4]. Its strength has been shown for different use 
cases in game theory [5].One of these use cases is well 
adaptable to the present problem as it can cope with 
incomplete information. Its name is partial information 
game or Bandit Setting. Similar to the fortune slot machine 
and their according probabilities in [5], the approach 
presented in this paper distinguishes between different 
system options. All system options have a different 
probability to be chosen as described before. The basic idea 
of the algorithm consists of six steps that build an iterative 
loop (see Fig. 1).  
 

 
Figure 1: Schematic representation of the RWM 

The goal is to find good solutions which are evaluated very 
iteration by the use of an objective function. With the help 

of the assessment for every actual solution a probability can 
be derived and expresses the quality with respect to a 
certain objective function. A full description of this 
methodology can be found in [5].  

ADAPTATION OF THE BASIC ALGORITHM 

In this section the algorithm in its basic form is adapted to 
match the given grid optimization problem as well as the 
restricted hardware capabilities. Therefore, the objective 
function is explained in detail and further simplification 
steps are shown. The development of the grid management 
and forecast algorithm is presented as well. 

Objective Function 

Within the Smart Operator project, the aim is to keep the 
voltage and line utilization in predefined bands. Therefore, 
an objective function has to be formulated that can handle 
real-time data of voltage and current as input. DIN EN 
50160 [6] can be taken as assessment base. In order to 
fulfill the voltage requirements, the penalty term ∆U 
describing the voltage deviation from the nominal voltage is 
calculated for every bus. Afterwards, all the penalty terms 
of all M buses are summed as shown in Formula (1): 
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where ���  weighted voltage deviation in p.u. of ��ℎ  bus 

��  actual voltage 

�	  nominal voltage 

�
  band voltage (to be predefined) 

� weighting factor 

 
The weighting factor G has to be greater than two in order 
to increase the penalty for non-compliance of the voltage 
band. 
To minimize the line utilization a mathematical expression 
is formulated so that utilization beneath the limit of the long 
term rating punishes only very low, but increases the penalty 
for high utilization and clearly detects injuries as demanded 
within the Smart Operator Project. Therefore, Formula (2) 
shows the penalty function for the line utilization term. 
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where ΔS weighted total apparent power of lines in p.u. 

Pi  active power of line i 

Qi  reactive power of line i 

�Limit  apparent power limit 

� weighting factor  

 
The determined apparent power ∆S of every line i are 
summed over the number of all line L as well. The 
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weighting factor G can be used here similar to Formula (1).  
Altogether, the final objective function can be formulated as 
followed: 

 xit �t� = e− X · ΔU�t�+Y · ΔS�t�ln �xMax +1�      
2�32 = �32 45 ·  ����� + 6 ·  ����� ∀ � ∈ �0, ��; 

<��ℎ 5 + 6 = 1  

(3) 

where 5 voltage deviation weighting factor 

6 line utilization weighting factor 

xit  objective function 

2�32  highest hitherto penalty 

 
Formula (3) of the objective function transforms the 
formerly presented penalty terms into a remuneration term 
since a better convergence can be reached. This can be 
achieved by using the hitherto maximal penalty expression 
as quotient.  

Learning Process Adaptation 

The households and distributed generation unit patterns in a 
distribution grid differ with respect to short- and long term 
consumption over time. E.g. PV-units reach a higher 
generation peak around noon than at night and also the 
maximum height differs from summer to winter months. A 
classical learning algorithm is not able to cope with these 
seasonal changes, as it tries to learn that kind of behavior 
without any adaptions.  
Therefore, strategies are introduced which divide the pre-
learning process. Each strategy is trained individually for a 
certain grid state and later linked to a set of external 
information (temperature, solar radiation, weekday and 
time). The algorithm learns which strategy is effective at 
which external information running basically the same 
algorithm as described above. The strategies itself are 
determined by a pre-learning-phase. The whole algorithm 
learns when to use a certain strategy and is able to adopt 
each strategy over time as the supply task changes. 

Simplifications on the algorithm 

There are a number of simplifications of the algorithms in 
order to enable an implementation into restricted hardware 
within the field trial (see [3]). Simplifications can reduce the 
number of possible grid states and will be presented in the 
following. 
The algorithm divides the grid into separate LV feeders. 
The individual evaluation of the state of each feeder enables 
the algorithm to react to a critical state by switching the 
assets of the respective feeder, only. Additionally, only the 
best states of all feeders are combined and are considered as 
system options. These numbers can be adjusted regarding 
the size of the operated distribution grid. The possibility of 
eliminating a rather good state rises with limiting the 
number of possibilities; therefore this parameter must be 
adjusted carefully.  
Depending on the number of households using DSM the 
feeder can be separated into several parts. Households 
located geographically close to each other and using DSM 

are clustered into one feeder-part. Consequently, they are 
treated as one big household. In real-time control they are 
individually addressed again by disaggregation. Thus, the 
number of possible grid states is reduced, assuring at the 
same time an equal treatment of each DSM household in the 
grid. 

Grid management and forecast 

An intensive learning process assures the probability vectors 
to be well trained and therefore the vectors are converged to 
the best system option. Using the different strategies an 
asset schedule forecast for certain situations is derived by 
picking the according best system option. Based on the 
information learned and the according forecast a grid 
management algorithm is implemented. 
Similar to the learning process of the RWM a load flow 
calculation serves as assessment application. Measured data 
together with the knowledge about the actual settings of all 
assets allows calculating the grids state. 
Consequently, after this assessment, all controllable assets 
are set according to the forecast and an assessment is 
conducted similarly. The setting which fulfills the objective 
function best is picked in order to get a better state. To 
minimize switching actions the actual state assessment is 
weighted with a factor of 1.1 since this factor leads to a 
stable grid management determined in a pre-analysis.  
Nevertheless, if the objective function is injured, an 
unscheduled control is done based on the probability 
vectors which can cover the whole grid or only parts of it. 
However, if no solution can be found a backup control 
based on an expert system2 is conducted. 

CASE STUDY 

The developed algorithm is tested on a typical 153-node LV 
grid with four feeders and a 250 kVA transformer. A typical 
summer day with probabilistic loads and PV generation is 
regarded. The resolution is set to 1 h but can freely be 
adjusted. Table 1 summarizes all assets that can be 
controlled by the algorithm with the according states that 
build the system options. The battery is discretized to its 4-
quadrant operating area. A reasonable power dimension of 
the battery for the present grid is determined to be +/-3 kW / 
3 kVAr in a pre-analysis. 

Asset States Attributes 

OLTC 9 4 % per state 
Switch 2 on / off 
Battery 9 +/- 3 kW / kVAr 

Table 1: Considered assets within the simulation  

Also considering households with DSM aggregated to one 
big household per feeder with three different load profiles, a 

                                                           
2
A more elaborate analysis is due to be published by the authors. 

 



    C I R E DC I R E DC I R E DC I R E D 22nd International Conference on Electricity Distribution Stockholm, 10-13 June 2013 

 

Paper 0702 

 
 

CIRED2013 Session 3 Paper No  0702      

total of 10,368 system options are generally possible. The 
algorithm detected 756 as appropriate from the grid’s point 
of view. Therefore, the others are neglected for the grid 
management. 
To cover every possible grid state for real-time grid 
management, a systematical learning phase is conducted. 
This leads to 216 strategies that cover every load 
combination of the four feeders that are built up on their 
power limits derived out of historical data. 
For the simulation of grid operation the households with 
DSM are modeled as consumers which can randomly 
exhibit three different load profiles and thus cannot be 
changed. Only if the algorithm has to unexpectedly 
intervene the profiles can be altered. 

Results 

Trying to fulfill the objective function to its best figure 2 is 
depicting the average voltage deviation with and without 
control. 
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Figure 2: Average voltage deviation in operating period 

At first glance, hour 14 shows that the voltage deviation 
with control seems to be worse compared to no switching 
application. Since the objective function also considers 
formula (2), the algorithm assessed a less utilized line to be 
more suitable than an increased voltage at some buses. In 
order to demonstrate the algorithm’s behavior in unforeseen 
situations a voltage drop to 0.85 p. u. at MV level has been 
simulated in hour 11. Without switching the voltage band 
would be violated as to see in figure 2 at hour 11. Thus, the 
algorithm intervenes and uses the tap changer. Figure 3 
shows the asset schedule within the operating period. The 
switch is not depicted since it has never been used in the 
period. 
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Figure 3: Schedule of assets within operating period  

In order to analyze the forecast as well as the actual grid 

management algorithm figure 4 shows its behavior with 
respect to switching applications. Most of the time the 
actual settings of the assets are kept constant since the 
assessment of the actual state is weighted with 1.1 as 
described above. Thus, the goal is not to invent a perfect 
forecast that should be valid in every situation and leads to 
an optimal grid state. Rather a grid management algorithm 
is achieved providing a valid grid state even facing voltage 
drops greater +/- 10% of nominal voltage. 
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Figure 4: Schedule of assets within operating period  

CONCLUSION AND OUTLOOK 

Future distribution grids will require a well-coordinated grid 
management in order to ensure a safe, reliable and 
autonomous grid operation. The proposed algorithm enables 
for an efficient grid management as well as an asset 
schedule forecast that can be derived out of the learned 
information. With respect to advancing smart grid 
development in the future, the required systematical 
coordination of DGs and other controllable assets can be 
realized through control strategies as presented in this 
paper. 
To enable a spread of the algorithm an appropriate analysis 
of scalability and adaptability of the algorithm to other grid 
structures will be done [3]. The approach should be able to 
deal with new supply task in the future, when DG 
penetration increases as well as grid topology may be 
changing. 
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