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ABSTRACT 

As power systems evolve into “Smart Grids” and beyond, 

they will increasingly rely on numerous sophisticated 

control algorithms to meet the demands of users and 

optimise operation. However, it is unlikely that a single 

algorithm can deliver the best performance for all possible 

network configurations, conditions and performance 

objectives. By judiciously selecting different algorithms 

better overall performance can be achieved. This paper 

describes an approach to selecting control algorithms for 

power systems; including a case study demonstrating both 

the need for and the effectiveness of algorithm selection for 

a voltage control problem on an 11 kV network. 

INTRODUCTION 

There are numerous drivers for adoption of “Smart 

Grids” [1], including allowing more renewable generation 

to connect, increasing reliability, improving efficiency and 

deferring expensive network reinforcements. An essential 

technical support of Smart Grid efforts is the development 

of sophisticated control algorithms such as those for 

voltage [2] or power flow control [3]. 
 
However, it is unlikely that individual control algorithms 
could solve all potential control problems, as their design 
will inevitably be limited by the assumptions and 
compromises made by their designers. Control algorithms 
tend to be designed for a particular control task, and could, 
therefore, lack the flexibility to be applied to other control 
tasks; for example, it would be likely for a voltage control 
algorithm to perform badly at managing thermal constraints 
compared with a power flow management algorithm. The 
complexity of a network’s configuration (including its size, 
physical topology and mix of connected devices) and state 
can degrade algorithm performance; for example, a voltage 
control algorithm that assumes load-only networks is likely 
to control voltages poorly if applied to networks with 
significant distributed generation. Furthermore, uncertainty 
about the current or future network configuration and state 
can affect algorithm performance; for example, an algorithm 
that predicts future loads in order to dispatch matching 
levels of generation may under-dispatch if loads 
unexpectedly change, such as in response to an 
unanticipated cold spell. As algorithm performance varies, 
there will be conditions where different algorithms will be 
best at meeting the current performance objectives. 
Therefore, improved overall performance may be achieved 
by selecting algorithms appropriate to the current problem. 

The problem of judiciously selecting control algorithms for 
power systems is being researched as part of the Autonomic 
Power System (APS) project [4]. The APS is a multi-
disciplinary, 4.5-year, UK government-funded project being 
undertaken by over 40 researchers in a consortium of UK 
universities including Durham University, the University of 
Manchester and the University of Strathclyde; along with 
industrial partners including IBM, National Grid and 
Parsons Brinckerhoff. The project seeks to develop power 
system network operation and control for a time horizon of 
2050. This is beyond the current vision of Smart Grids, with 
the APS aiming to meet the constantly-changing goals of the 
system’s stakeholders by continually and appropriately 
deploying decentralised control algorithms in dynamic 
zones of control (illustrated in Fig. 1). 
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Figure 1 – Overview of the APS concept 

Within each control zone of the APS, it is necessary to 
select control algorithms appropriate to the current 
objectives, network configuration and conditions. Research 
into methods of algorithm selection in power systems is not 
just limited to operational selection of control algorithms, 
however. The methods can be extended to develop planning 
tools for future networks and could also direct the 
development of novel control algorithms, by finding 
performance gaps in current algorithms. 

THE ALGORITHM SELECTION PROBLEM 

The challenge of selecting algorithms appropriate for 

solving different problems has been established in 

Computer Science for some time, with the so-called 

“Algorithm Selection Problem” being formulated by John 

Rice almost 40 years ago [5]. A recent increase in interest in 

this problem has seen successful applications in, for 

example: Boolean satisfiability [6], optimisation [7] and 

genetic algorithms [8], among others. However, to the 

authors’ knowledge algorithm selection and its potential 

benefits have not yet been applied to power systems control. 

Model of the Algorithm Selection Problem 

Rice produced a model of the Algorithm Selection Problem, 

the general form of which is presented in Fig. 2. 
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Figure 2 – Model of the Algorithm Selection Problem 

Rice’s model consists of four spaces: 

¶ Problem Space: a space X containing all the 

problem instances x under consideration. In power 

systems, this space could contain a complete 

description of the system’s state, including bus 

voltages, individual generator set points and switch 

statuses, for example. 

¶ Feature Space: a space F containing features f(x) 

extracted from each problem instance x, which 

should ideally be simpler and a lower dimension 

than x. Where the description of each problem 

instance is small the problem instance can be used 

directly without the need for feature extraction, so 

in these cases: f(x) = x. In power systems, this space 

would contain some subset of the problem space, 

such as voltages at certain key buses and the sum of 

total generator output, for example. 

¶ Algorithm Space: a space A containing all the 

algorithms, a, under consideration (sometimes 

referred to as the algorithm portfolio). 

¶ Performance Space: a space ὣ containing the 

performance, y(a, x), of each algorithm a applied to 

each problem instance x. Performance can be multi-

dimensional so, taking a power system example, 

each algorithm’s performance could include its 

ability to control voltages and the total losses it 

incurs once deployed, for example. 

The issue at the heart of the Algorithm Selection Problem is, 

given the other items in the model above, to determine the 

selection mapping S(f(x))→a. This is the mapping from 

problem features in F to an algorithm in A; in other words, 

an algorithm selector. Most commonly S is chosen in order 

to maximise the norm of performance ||y|| for all x (typically, 

the norm is a measure of average performance), although 

there are variations such as only considering a subclass of 

problems or a subclass of all possible mappings. 

Deriving Selection Mappings (Algorithm Selectors) 

Deriving the best selection mapping is, ironically, another 

selection problem. Rice proposed to use the tools of 

approximation theory to tackle this problem, although the 

majority of recent work on the Algorithm Selection Problem 

has used machine learning techniques instead.  The 

approach is essentially to gather empirical performance data 

for the algorithm portfolio of interest, and apply machine 

learning to develop performance models of the algorithms. 

The performance models can be developed in one of two 

ways so that they can be used as algorithm selectors: 

¶ On a per-portfolio basis, where a performance 

model for the whole portfolio of algorithms is 

learnt, which predicts the best performing algorithm 

a from features f(x) (Fig. 3a). 

¶ On a per-algorithm basis, where a performance 

model for each algorithm is learnt that predicts the 

performance ŷ from features f(x) (Fig. 3b) and the 

algorithm with the best ŷ is selected. 
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Figure 3 – Different algorithm performance models 

that can be used for algorithm selection 

There are two broad types of machine learning that can be 

used for algorithm selection: classification and regression. 

Classification seeks to predict what class (a category) a set 

of input features belongs to, and is most suited to per-

portfolio selection. Regression, on the other hand, seeks to 

predict real-valued outputs from input features, and is more 

suited to per-algorithm prediction and selection. 

CASE STUDY 

This case study examines the ability of a number of control 

algorithms to maintain voltages within limits (0.97 and 

1.03 pu) in an 11 kV network under a variety of network 

conditions. The potential of selecting between the different 

algorithms is then investigated as a way of improving the 

voltage control performance. 

Network Model 

The network model for this case study came from the 

AuRA-NMS project [2]. The network topology is shown in 

Fig. 4, and consists of a grid infeed at 33 kV connected to 

three step-down 33/11 kV transformers, which in turn 

supply radial feeders, each with multiple loads. On one 

feeder are two Distributed Generators (DGs). 

 
Figure 4 – Case study 11 kV network 
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The model was implemented in IPSA and the following 

features were varied within it, with each combination 

forming a problem instance (2625 in all) to be solved: 

¶ Transformer(s) tap setting {1, 2, … 21} 

¶ DG 1 output {0%, 25%, 50%, 75%, 100%} (real 

power modulated, with a constant power factor) 

¶ DG 2 output {0%, 25%, 50%, 75%, 100%} 

¶ Load levels {50%, 75%, 100%, 125%, 150%} 

Control Algorithms 

The following algorithms were considered in the case study: 

1. NULL: this algorithm does not produce any control 

actions, and thus characterises the network’s base 

response to the current problem instance. 

2. AVC098: implements Automatic Voltage Control 

(AVC) on the 3 transformers simultaneously, with a 

voltage set point of 0.98 pu on the LV side. 

3. AVC102: AVC with a voltage set point of 1.02 pu. 

4. CBR: implements a version of the case-based 

reasoning voltage control approach developed for 

the AuRA-NMS project [2]. The case base for this 

algorithm comprises of previous voltage-outside-

limit events and control actions (tap changer steps 

and/or DG output modulation) taken to mitigate 

these. On detecting voltages outside limits, the case 

base is interrogated to find a past case most similar 

to the current conditions, and the actions taken for 

the previous case are retrieved and applied to the 

current network. 

Algorithm Performance 

Each of the 4 control algorithms was applied to the full set 

of problem instances. Figure 5 shows that no algorithm 

could solve all the voltage control problem instances. The 

poor performance of NULL indicates that without using one 

of the other algorithms, the network will suffer from under- 

or over-voltage for the majority of network conditions 

studied. The weak performance of CBR, compared with 

AVC098 and AVC102, is most likely due to the case base 

not being optimised to the range of problem instances 

considered. Also, the implementation of the CBR algorithm 

lacked the online validation step used in [2], which may also 

have lowered its performance. 
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Figure 5 – Performance of each algorithm on all 

problem instances 

However, as shown in Fig. 6, each problem instance can be 

solved by one or more of the algorithms. Therefore, if an 

appropriate algorithm is selected for each instance, there is 

the potential to solve every problem instance. 
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Figure 6 – Number of algorithms able to solve each 

problem instance 

Algorithm Selector Development 

As there was a potential performance gain in selecting 

control algorithms for the case study network, an algorithm 

selector was developed. This was a per-portfolio selector, 

which directly predicts which algorithm would perform best 

based on the current problem instance features. 

 

To develop the selector, each problem instance was labelled 

with an algorithm that was able to solve that instance. 

Where more than one algorithm could solve an instance, the 

labelled algorithm was chosen according to the order 

AVC098, AVC102, CBR and NULL, as each instance could 

only be labelled with one algorithm. Thus each problem 

instance was represented by a tuple consisting of the 4 input 

features (e.g. load level) and 1 output feature (the labelled 

algorithm). This labelled instance data was randomised and 

then used to induce a classification tree using the C4.5 tree 

learning algorithm in the Weka machine learning toolkit [9]. 

Algorithm Selector Performance 

The tree learnt using 66% of the labelled instance data is 

shown in Fig. 7 (overleaf). When tested using the remaining 

34% of instance data, the tree was able to predict the correct 

algorithm to use with 100% accuracy, and thus each 

problem instance could be solved. The performance of this 

algorithm selection approach compares favourably with the 

performance of the individual algorithms applied to the 

same test dataset (as shown in Table 1), as none of these can 

solve all the test instances, whereas the selection approach 

can solve all. Furthermore, the tree structure was stable and 

gave the same predictive performance even when only 25% 

of the instance data was used for training. 
 

Algorithm No. of Instances 

Solved 

% of Instances 

Solved 

NULL 207 23.21% 

AVC098 704 78.92% 

AVC102 690 77.35% 

CBR 631 70.74% 

Using Selector 892 100.00% 

Table 1 – Performance of individual algorithms and 

selection approach on test dataset (34% of instances) 

DISCUSSION 

The high accuracy of the algorithm selector is in part due to 

the learning algorithm used, but it also in part due to the 

order of algorithms used when labelling the instance data. 
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It was found that changing the order of the algorithms 

affected the predictive performance of the learnt tree. The 

order (NULL, CBR, AVC102, AVC098) had the lowest 

prediction accuracy (94.28%) when trained on 66% of the 

instance data; although it still solved more problem 

instances than any of the individual algorithms. 

 

The reason why the order chosen affects the predictive 

performance is that it introduces artificial structure into the 

instance data. The order changes the number and location of 

regions of one class (labelled control algorithms) within the 

performance space, increasing its complexity. As the tree 

learning algorithm looks for these regions and attempts to 

define partitions to separate them, the different 

compositions of regions will affect the learning algorithm’s 

ability to create partitions that effectively separate classes. 

Thus, misclassifications are more likely to occur and the 

predictive performance of the learnt tree is lower. 

 

The size of the learnt tree indicates the complexity of the 

performance space being learnt. The tree in Fig. 7 is 

relatively small compared with the trees learnt from 

different algorithm orders, which increase the complexity of 

the performance space. For example, the order that gives the 

lowest predictive performance produces a tree with 159 

nodes, whereas the tree of Fig. 7 has only 39. 

 

The effect of different orderings on predictive performance 

is one weakness of per-portfolio algorithm selection. 

Selection via per-algorithm performance models may be 

more appropriate in some cases. Per-algorithm selection 

may also reduce the training overhead when new control 

algorithms are introduced, as only a performance model for 

that algorithm needs to be learnt, whereas a per-portfolio 

selector would have to be completely re-learned. 

CONCLUSIONS & FUTURE WORK 

In this paper algorithm selection has been presented as a 

way to improve network operational performance when no 

single control algorithm can provide the best performance 

for all conditions. Both the need for and the effectiveness of 

algorithm selection has been demonstrated through a case 

study of voltage control on an 11 kV network. 

Future work will compare per-portfolio selection with per-

algorithm selection, as well as analysing the appropriateness 

of different machine learning techniques for these selection 

approaches. Power flow management will be considered as 

a control task as well as voltage control, with control 

objectives including loss minimisation, conservative voltage 

reduction and increasing penetration of renewables. A 

variety of algorithms will be implemented and tested against 

these tasks and performance objectives. The range of test 

networks will be expanded to include numerous voltages, 

different network topologies and a diverse array of devices. 

Important intra- and inter-network features and interactions 

will be characterised so that selections can be made for 

arbitrary networks and zones within networks. 
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Figure 7 – Learnt classification tree for voltage control algorithm selection 
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