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ABSTRACT 

This paper describes the development of distribution state 
estimation for trial on the Orkney Isles in the north of 
Scotland. The paper discusses the techniques selected for 
the trial based on the requirements of the distribution 
network operator. The techniques include the use of a 
novel error estimation technique that calculates an error 
interval for data derived via distribution state estimation.    

INTRODUCTION 

The proliferation of distributed energy resources (DER) 
and anticipated changes to load patterns are changing the 
planning and operation of distribution networks. Issues 
associated with the connection of DER, such as 
congestion, voltage-rise and voltage-step-change, have 
led to the requirement for greater visibility of such 
networks. However, the need for visibility has to be 
balanced against the cost of additional measurement and 
telemetry, including possible redundancy. Distribution 
state estimation (DSE) offers the possibility of using a 
reduced set of measurements, augmented with pseudo-
measurements, to provide extended visibility of 
distribution networks. As a result, Scottish and Southern 
Energy Power Distribution (SSEPD), the Distribution 
Network Operator (DNO), is trialling the use of DSE on 
the Orkney Islands in Scotland, an area of network with 
significant connection of distributed generation and 
additional yet untapped renewable energy resources. This 
activity is set in the context of the wider deployment of 
an active network management scheme on Orkney, which 
has been operational for three years and has enabled an 
additional >20 MW to connect to a network previously 
considered full [1], representing one of the leading smart 
grid deployment projects in Europe.  DSE is one of the 
further developments being implemented in the next 
generation of the active network management scheme on 
the Orkney Isles [2]. 
 
In this paper, we discuss the DNO’s requirements for 
distribution state estimation and the techniques which 
were selected based on those requirements. During the 
requirements elicitation process, a requirement emerged 
for an online method for computing the error bounds of 
the state variables estimated by the DSE and additional 

quantities derived from those estimates, e.g. current and 
power flow. This requirement has yet to appear in the 
literature on DSE but received consideration in research 
into classical state estimation problems. 
 
For the Orkney Island trials, the problem of error 
estimation was address by adapting the method originally 
presented in [3][4] and augmenting the functionality of 
SGS’s existing distribution state estimator, sgs visibility, 
to utilize that adapted method. The method exploits the 
full measurement Jacobian for a converged state estimate 
and the measurement residuals, as produced by sgs 
visibility, as well as knowledge of the transducer errors. 
This paper discusses the nature of further results and the 
validity of the assumptions on which the method is based. 
The impact of error estimation on the use of the output of 
distribution state estimation, as a tool for supporting 
network operation and as a potential input to active 
network management, is also discussed. 

DISTRIBUTION STATE ESTIMATION 

DSE has been the subject of numerous papers [5-13]. 
DSE problems differ from classical state estimation 
problems in that the limited number of   measurements 
renders most DSE problems mathematically under-
determined.  
 
Whilst [5-13] illustrate several different formulations of 
distribution state estimation problems, the DSE 
techniques discussed in this paper are based on weighted 
least squares (WLS) methods which involved providing 
the state estimator with additional pseudo-measurements, 
in our case estimates of load, which render the state 
estimation problem over-determined and hence tractable 
using more traditional state estimation methods. Our 
selection of state estimation method has been influenced 
by the results reported in [13].  

DSE ON ORKNEY 

The Orkney Isles, to the north of the Scottish mainland, 
are an area of considerable reserves of renewable energy. 
The islands rank amongst the windiest places in Europe, 
where the capacity factor of wind generation regularly 
exceeds 40%. The area also hosts the European Marine 
Energy Centre, with significant wave and tidal resource 
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in the waters around the island. In the mid-2000s the 
network on Orkney had reached capacity for connection 
of distributed generation. In order to avoid prohibitively 
expensive reinforcement of the submarine cable 
connections to the mainland, an active network 
management scheme was deployed on the island to 
manage connected generation under non-firm connection 
agreements [1][2].  
 
Constraints on the network are primarily thermal; 
however, the increasing level of penetration of distributed 
generation is expected to present voltage control 
challenges and the relatively observable nature of the 
network make it an attractive site for the trials of DSE. It 
is an area of network which is planned and operated in an 
active manner and, as a result, greater visibility of the 
network would be beneficial to the DNO. SSEPD wishes 
to trial the use of DSE on Orkney to assess its 
performance and potential application for other locations 
in its licence areas.  It is expected that the deployment of 
DSE on an existing active network management platform 
will further demonstrate a least cost and efficient means 
of deploying smart grid functionality. 
 
The network on Orkney is reasonably well instrumented. 
The network model used by the DSE comprises 70 buses 
with 76 branches.  Voltage at 15 of the busbars is visible 
to the control room, as are flows or current on 30 of the 
branches. Studies carried out by Smarter Grid Solutions 
have shown that DSE, without employing pseudo-
measurements, increases the observability index of the 
network from 25.86% to 83.56%. The addition of a small 
number of pseudo-measurements can increase 
observability to 100% at 33 kV and at primary 
substations (33/11 kV). 

DSE Requirements 
Initial trials are to focus on the 33kV network and 11kV 
primary substations.  SSEPD has identified the 
requirement for:  

 Security, capacity, performance, availability, 
and configurability;  

 The ability to identify areas of the network 
where a state estimate can be calculated; 

 The identification of bad/erroneous data;   
 The ability to provide an estimate of the error in 

the resulting state estimate; and  
 Timely production of state estimation data;  

 
Most of the requirements above can be met with 
techniques available in the literature on DSE. Below we 
detail our selected methods and the rationale for their 
selection. Error estimation is given special treatment in 
that we have selected a technique not normally applied to 
distribution networks. We present the results of offline 
studies based on historical data to indicate the sort of 
performance we expect to see during online DSE trials.  

DSE Methods 
Observability Analysis 
Observabililty analysis involves identifying observable 
islands, contiguous sets of buses for which, given the 
available measurements and pseudo-measurements, a 
state estimate can be calculated. sgs visibility uses a 
numerical method based on Gaussian elimination, similar 
to the method described in [14].  
 
State Estimation 
For each observable island a state estimate is calculated. 
sgs visibility employs the Hachtel method for state 
estimation [15]. In the Hachtel method, virtual 
measurements and regular measurements are represented 
as equality constraints. This leads to increased numerical 
stability of the state estimator as the coefficient matrix is 
less likely to be ill-conditioned.   
 
Bad Data Detection  
Once a state estimate for an observable island has been 
calculated, sgs visibility uses the maximum normalised 
residual technique for identifying bad data [15]. Should 
bad data be identified, it is removed and the DSE process 
is started again with the reduced data set omitting the 
offending measurand/pseudo-measurement. New 
observable islands are identified, state estimates for each 
island are calculated and bad data detection repeated. 
This process is executed recursively until the DSE has 
found a set of state estimates for a set of observable 
islands with no bad data.   
 
Error Estimation  
SSEPD requires a means of estimating the error of the 
output of the state estimator. This is a novel facet of the 
DSE being deployed on Orkney. As a result we have 
described the approach in the following section.  

ERROR ESTIMATION   

The error estimation module of sgs visibility uses the 
method described in [3][4]. The method determines the 
maximum and minimum possible error in individual 
estimated states, i.e. bus voltage magnitude and angle, 
based on the solved measurement Jacobian, transducer 
errors and measurement residuals. A set of optimisations 
are solved for each state variable or quantity derived from 
state variables that we wish to calculate an upper and 
lower bound for, e.g. branch flows.  
 
The objective functions of the method can be expressed 
as follows, 

ܰ	∀		݅				ݔ݀	:ݔܽܯ		 െ 1 
ܰ	∀		݅				ݔ݀	:݊݅ܯ െ 1 

 
where dxi is the change in the ith state variable for N state 
variables. For a given solved island of N buses the error 
bound calculation entails 4N-2 calculations. 



 C I R E D 22nd International Conference on Electricity Distribution Stockholm, 10-13 June 2013 
 

Paper 1100 
 

 

CIRED2013 Session 4 Paper No  1100      

 
The problem is formulated as a linear programme, with 
2N-1 calculations to determine the minimum possible 
bounds and another 2N-1 calculations to determine the 
maximum possible bounds. The slack bus has a reference 
angle of 0 radians and hence no error bound calculation is 
required for the slack bus angle.  
 
For any given measurement, there will be a measurement 
error, owing to the calibration and specification of the 
transducer employed, given as τ. This is taken account of 
by adding and subtracting τ to and from the residual, i.e. 
the difference between the measured states and the 
estimated states,  

ݖ∆ ൌ 	 ݖ െ ݄ሺݔොሻ േ τ 
 

where ∆ݖ 	is the residual associated with the jth 

measurement and ݄ሺݔොሻ is the calculated (expected) 
values for the various measurements arising out of a 
converged state estimate solution. The resulting vectors 
of m values are given as Δzl and Δzu . These values are 
the upper and lower bounds of the inequality constraints 
in the formulation. In the case of virtual measurements 
there is no transducer error, i.e. τ=0. The full 
measurement Jacobian contains the sensitivity of each of 
the measured quantities, including virtual measurements, 
to changes in the estimated state variables. The set of 
inequality constraints relating to these quantities can be 
expressed as follows, 
 

ݖ∆  ݔ∆ሻݔሺܪ   ௨ݖ∆
 
where ܪሺݔሻ is the full measurement Jacobian obtained 
from the converged solution of the state estimator and Δx 
is the vector of changes in state determined by the linear 
programme, commonly referred to as the control or 
decision variable. For each iteration the state being 
maximised/minimised (i) is incremented by one, i.e. for 
any given solution to the linear programme, it is only the 
change in the ith state (dxi) that is of relevance. Values 
are calculated for all other states, but these values are 
adjusted by the linear programme as necessary to achieve 

the maximisation or minimisation of the ith state. 
 
Figure 1 shows a set of results for the largest observable 
island on Orkney without using pseudo-measurements.  
 
Implicit in this method is the fact that states in the 
network for which there are no or very few associated 
measurements of any kind, the error bounds will be 
significant and will generally represent an accumulation 
of the transducer errors. This can be seen in the outliers in 
figure 1, at bus 20, 22, 24, 36, 44, and 54. These buses 
are located on remote parts of the network, each one 
being four to five buses away from a measurement. 
Studies indicate that pseudo-measurements can tighten 
these bounds. The sparsity of the ܪሺݔሻ is also of 
relevance here. For weakly interconnected systems, it 
will tend to be sparse, essentially providing less 
restriction on the error bounds. Simply put, each value in 
 ሻ relates a measurement to a state, the less non-zeroݔሺܪ
entries the less information available on the unmeasured 
states, of which typically there are many. 
 
Another point to note is the assumption of linearity 
around a given operating point. In [4], two formulations 
of the error estimation problem were compared: one 
based on a linearised model solved using linear 
programming and a non-linear formulation solved with 
computationally more intensive quadratic programming. 
The results in were comparable; however, it may be 
possible that weights and corresponding τ of any pseudo-
measurements would challenge the linearity assumption. 
Further investigation in this area is required, with 
potential for the application of non-linear programming 
techniques. 
 
In terms of time to compute a solution, the method set out 
in [3][4] requires a significant number of linear 
programmes to be solved in order to calculate state 
estimates. For a network the size of Orkney, this takes 
around 2 seconds on a standard server. However, given 
that each linear programme is independent, these could 
be solved concurrently on different cores of the server, 
reducing the time to compute a solution.   

+ - estimate, *-upper bound,  - lower bound 
Figure 1: Voltage magnitude state variable estimates and calculated error bounds. 



 C I R E D 22nd International Conference on Electricity Distribution Stockholm, 10-13 June 2013 
 

Paper 1100 
 

 

CIRED2013 Session 4 Paper No  1100      

DSE AND ANM 

As discussed at the start of the paper, Orkney hosts one of 
the leading smart grid deployments in Europe. The ANM 
scheme on Orkney has been in operation since 2009. 
Whilst the ANM scheme on Orkney does not utilise DSE, 
the proposed use of DSE within the context of ANM is 
not new: GenAVC [16] exploited DSE to reduce 
measurement costs. AuRA-NMS [17], which tackled both 
voltage and thermal issues, also proposed the use of DSE 
to those ends but no trials were ever undertaken as part of 
that project even though several approaches to DSE were 
developed.  
 
The rationale, that the primary reason for deploying DSE 
as part of an ANM scheme is to reduce instrumentation 
costs and/or improve performance in the presence of 
measurement errors or loss of communications, is one 
that researchers continue to wrestle with. The cost and 
performance implications for DSE have to be compared 
with the cost and performance implications of additional 
measurements.   

CONCLUSIONS 

This paper has discussed the requirements driving the 
development of DSE on the Orkney Isles in Scotland. 
Based on those requirements, the methods described in 
this paper have been selected for trials which are due to 
begin in the summer of 2013. 
 
The error estimation technique has been highlighted as a 
requirement of the DNO if DSE is to be successfully 
applied. This paper has investigated the use of the 
technique described in [2][3] to this end. The technique is 
based on a number of assumptions, mainly that the 
validity of the assumption that linearity can be assumed 
across the ranges considered by τ and that no specific 
treatment of parameter errors, i.e. error in the assumed 
branch parameters, is considered. It is anticipated that the 
forthcoming trials will provide data that will be used to 
assess the impact of these assumptions and will be of 
great interest to the wider power industry working on 
these issues.    
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