
 C I R E D 22nd International Conference on Electricity Distribution Stockholm, 10-13 June 2013

Paper 1109

CIRED2013 Session 3 Paper No 1109

CySeMoL: A tool for cyber security analysis of enterprises

Hannes HOLM, Teodor SOMMESTAD, Mathias EKSTEDT, Lars NORDSTRÖM
Royal Institute of Technology (KTH)

{hannesh, teodors, mathiase, larsn}@ics.kth.se

ABSTRACT
The Cyber Security Modelling Language (CySeMoL) is a
tool for quantitative cyber security analyses of enterprise
architectures. This paper describes the CySeMoL and
illustrates its use through an example scenario involving
cyber attacks against protection and control assets located
in an electrical substation.

INTRODUCTION
Many power utilities’ process control systems are built upon
commodity IT solutions which exchange data with the office
environment in various ways. Utilities’ IT environments
contain a large number of systems and system components
(computers, network equipment etc. as well as bespoke and
third-party off-the-shelf applications) connected to each
other to make up a complex system-of-systems. To assess
the security of an enterprise’s system architecture as a whole
an enormous amount of factors need to be considered. It is
not enough to simply assess all vulnerabilities present in the
computers; to assess the vulnerabilities of the larger system-
of-systems one also a need to understand how these
vulnerabilities relate to each other. Furthermore, to make
use of this vulnerability information there is a need to know
what countermeasures which are appropriate and how they
should be prioritized for this specific system-of-systems.

Decision makers of enterprise security issues typically have
a basic understanding of the enterprise architecture of their
organization and the losses incurred if assets are
successfully attacked. However, since it is a highly
complicated matter, decision makers’ understanding of how
vulnerabilities in their architecture depend on each other
and how they can be exploited often hazy. Support in terms
of security theory can be obtained from security experts or
literature. However, involving security experts is costly and
studying literature is cumbersome. Thus, tools that help
decision makers to understand how vulnerabilities relate and
what countermeasures that are applicable given certain
scenarios are valuable. Unfortunately, most decision makers
lack reliable tool support for this type of holistic enterprise
cyber security decisions.

Researchers have proposed various tools for estimating the
cyber security of an enterprise network – a few significant
being NETSPA [1], MulVAL [2] and the TVA-tool [3].
These tools however unfortunately have various constraints
that delimit their usefulness for a power utility manager. For
example, MulVAL and NetSPA are dependent on input
from network vulnerability scanners (which may crash the
scanned systems in unexpected ways) and TVA-tool
requires the user to specify the set of attacks which the

attacker is able to use (knowledge that few decision makers
possess or have time to gather).

This paper describes the Cyber Security Modelling
Language (CySeMoL), a modelling language and software
tool which can be used for cyber security analysis of
enterprises. This paper briefly describes the concepts of the
tool, the reader is referred to [4] for a more detailed
description.

THE CYBER SECURITY MODELLING
LANGUAGE
The main objective of CySeMoL is to allow users to create
models of their architectures and make calculations on the
likelihood of different cyber attacks being successful. Since
the model includes theory on how attributes in the object
model depend on each other security expertise is not
required from the user of CySeMoL. Users must only model
their system architecture (e.g., services, operating systems,
networks, and users) and specify their attributes (e.g., if
encryption is used and if software is well patched) in order
to make calculations possible.

The classes in CySeMoL includes various IT components
such as Operating System (e.g., Windows XP) and Firewall,
processes such as Security Awareness Program, and
Persons that are users. Each entity has a set of attributes that
can be either attacks steps made against the entity or
countermeasures associated to it. These attributes are
related in various ways. For example, the passwords of
password account can be social engineered – but the
likelihood of this attack being successful depends on
whether the person owning the password account is in a
security awareness program. Each attribute in CySeMoL
can have the value True or False and represents either the
likelihood of an attack being successful or the likelihood of
a countermeasure being functional.

In total CySeMoL contains 22 entities, 102 attributes and 32
entity relationships. An overview of the modelling language
can be seen in Figure 1. In Figure 1, the upper box in a class
describes the countermeasures associated with it; the lower
box describes the attack steps associated with it.
Relationships are marked by the dashed lines between
classes. For instance, a Person can be the owner of an
Account (e.g., a PasswordAccount) and part of a
SecurityAwarenessProgram.

 C I R E D 22nd International Conference on Electricity Distribution Stockholm, 10-13 June 2013

Paper 1109

CIRED2013 Session 3 Paper No 1109

ZoneManagementProcess

NetworkZone
DNSSEC
PortSecurity

Protocol

FreshnessIndicator
CryptographicAuthentication
CryptographicObufuscation

DataFlow

Disrupt
Replay
Eavesdrop
ManInTheMiddle
ProduceRequest
ProduceResponse

DataStore

ReadData
WriteData
DeleteData

PhysicalZone

Access

SoftwareInstallation

SoftwareProduct

GetProductInformation
ObtainSourceCode
ObtainBinaryCode
DevelopPatchableExploitForLowSeverityVuln
DevelopPatchableExploitForMediumSeverityVunl
DevelopPatchableExploitForHighSeverityVuln
DevelopUnpatchableExploitForLowSeverityVuln
DevelopUnpatchableExploitForMediumSeverityVunl
DevelopUnpatchableExploitForHighSeverityVuln

NetworkInterface

ARPSpoof
DenialOfService

StaticARPTables

IDSsensor

Service

OperatingSystem

ConnectToFromOtherZone
ExecutionOfArbitaryCodeFromOtherZone
ConnectToFromSameZone
ExecutionOfArbitaryCodeFromSameZone

StaticARPTables
HostFirewall
AddressSpaceLayoutRandomization
NonExecutableMemory

Person
SecurityAwarenessProgram

Account

GuessAuthenticationCodesOffline
SocialEngineerAuthenticationCode
GuessAuthenticationCodeOnline

PasswordAccount

AuthenticationMechanism

PasswordAuthentication
Mechanism

AutomatedPolicyEnforcer
HashedRepository
HashedRepositorySalted
DefaultPasswordsRemoved

UntrustedZone
TrustedZone

AllowedDF

PerimeterIDS

Protocol

Read Write

Medium

PhysicalZone

Product

PhysicalZone

ManagementProcess

AuthenticationMechanism

Owner

AwarenessProgram

HIDS

OperatingSystem

Owner

Zone

VPN Gateway

Server

ClientServer

Client

ApplicationClient

ACLsubject

CryptographicObufuscation

IncidentHandlingProcedures
HostHardeningProcedures
FormalPatchAndUpdatingProcess
RegularLogReviews
RegularSecurityAudits
FormalChangeManagentProcess

DeepPacketInspection

DPI

Proxy

ExtractPasswordRepository
BackoffTechnique

ProxyGateway

ExecutionOfArbitaryCodeFromSameZone
ExecutionOfArbitaryCodeFromOtherZone

CheckedWithStaticCodeAnalysis
HasBeenScrutinized
OnlyUsesSafeLanguages
SourceCodeClosed
BinaryCodeSecret
HasPublicPatchableSeverityVuln
HasPublicPatchableMediumSeverityVuln
HasPublicPatchableHighSeverityVuln
HasPublicUnpatchableLowSeverityVuln
HasPublicUnpatchableMediumSeverityVuln
HasPublicUnpatchableHighSeverityVuln

FindUnknownServiceFromOtherZone
ExecutionOfArbitaryCodeInUnknownServicesFromOtherZone
AccessThroughPortableMedia
AccessTroughUIFromOtherZone
AccessFromOtherZone
FindUnknownServiceFromSameZone
ExecutionOfArbitaryCodeInUnknownServicesFromSameZone
AccessTroughUIFromOtherZone
AccessFromSameZone
ARPspoof

Firewall

Firewall

AccessControlPoint

AccessControl

Bypass

Functioning
Tuned
Updated

DNSspoof
DenialOfService
FindUnknownEntryPoint
ObtainOwnAddress

HasAllLowSeverityPatches
HasAllMediumSeverityPatches
HasAllHighSeverityPatches

OperatingSystem

TerminalService

Access
DenialOfService
FindLowSeverityVulnerability
FindMediumSeverityVulnerability
FindHighSeverityVulnerability

Functioning

Functioning

Functioning

Figure 1. An overview of CySeMoL. Classes are related with dashed lines. Countermeasures are in the upper tile of

classes; attack steps are in the lower tile.

The attack steps and corresponding countermeasures in
CySeMoL can roughly be classified in seven different
categories (cf. Table 1). The attributes related to each
category were elicited based on literature and interviews

with domain experts. The likelihood that an attack step is
successful depends on the states of the attack steps and
countermeasures that influence this attack step. Each
likelihood estimate is given under the assumption that the

 C I R E D 22nd International Conference on Electricity Distribution Stockholm, 10-13 June 2013

Paper 1109

CIRED2013 Session 3 Paper No 1109

attacker is a professional penetration tester with one week
available for the attack. For instance, the likelihood of an
attacker (a professional penetration tester) discovering a
new vulnerability (a.k.a. a “zero-day”) in a software within
one week depends on 1) whether the attacker can identify
the software, whether the attacker can get its 2) binary or 3)
source code, 4) if the software has been scrutinized by
others, 5) if it has been completely developed in languages
“safe” to buffer overflows (e.g., Java compared to C++)
and 6) if it has been tested for security issues using static
code analysis tools [5].

All possible combinations between influencing attributes are
covered in CySeMoL. For instance, for the discovery of a
new vulnerability (which has six influencing attributes)
there are 26 different combinations available, totalling 64
possible likelihood estimates. For example, pose the
following scenario: An attacker can identify the software
and get its binary, but not its source code. The software has
been previously scrutinized by others. It has not been
developed in languages “safe” to buffer overflows. It has
been tested for security issues using static code analysis
tools. Given this scenario, there would be a 20% likelihood
of zero-day discovery within one week [5]. However, if the
source code becomes available to the attacker the likelihood
will increase to 73% [5].

Most likelihood estimates (82%) in CySeMoL are
deterministic, i.e., the attack is either known to be possible
or known to be impossible. For instance, it is virtually
impossible for an attacker to discover a zero day for a
software product he or she cannot identify, get a copy of or
get the blueprints for. The non-deterministic likelihood
estimates are drawn from empirical studies when possible.
Unfortunately, reliable empirical results are not available
for all attack types CySeMoL covers. To enable quantitative
analysis many non-deterministic likelihood estimates have
been collected using judgment by cyber security domain
experts. As the judgment of different experts can be of
different quality, Cooke’s classical method [6] is used to
estimate the actual value of each consulted expert. In
essence Cooke’s method involves a knowledge test; asking
each expert a set of questions for which the answer is known
at the time of analysis. Judgment by an expert who is
accurate and certain on these questions is more trustworthy
than that of an expert who is inaccurate and uncertain.

To enable user-friendly modelling and calculation, the
CySeMoL has been implemented in a software tool. This
software tool is also capable of automatically generating
CySeMoL models based on the results of automated
network vulnerability scanners such as Nessus [7].

 Table 1. Overview of categories in CySeMoL.
Category of
CySeMoL

Qualitative
validation

Quantitative data

Discovering
new
vulnerabilities

Literature and
3 experts.

Cooke’s classical method applied to
17 domain experts’ judgment.

Remote
arbitrary code
exploitation
attacks

Literature,
pilot study,
and 3 experts.

Cooke’s classical method applied to
21 domain experts’ judgment.

Intrusion
detection

Literature and
3 experts.

Cooke’s classical method applied to
165 domain experts’ judgment.

Denial-of-
service
attacks

Literature and
2 experts.

Cooke’s classical method applied to
23 domain experts’ judgment.

Exploitation
of network
configuration
mistakes

Literature and
2 domain
experts.

Literature data and judgments by
four domain experts’.

Attacks on
password
protection

Literature and
one domain
expert.

A review and synthesis of password-
guessing data and the capabilities of
rainbow tables.

Social-
engineering
attacks

Literature. Experiments on social-engineering
attacks.

AN EXAMPLE USE-CASE
This section describes how CySeMoL is used in terms of
modelling and analysis for an example scenario involving
an substation automation architecture. For presentation
purposes, this scenario is very simplified and thus not
realistic.

An overview of the architecture of the substation, as
modelled in CySeMoL (using the previously mentioned
software), can be seen in Figure 2. The substation has a
single network zone (P&C LAN), which has a single
computer connected to it; a Human Machine Interface
(HMI) running Windows XP SP3 and a Remote Desktop
Protocol (RDP) service for Remote login. The HMI has a
single user (a Technician), who has a single password
account on the system. The P&C LAN is managed by a
ZoneManagementProcess. It is separated from the internet
by a well configured Firewall. Any traffic to the RDP
service is allowed through the firewall. Also, any traffic to
and from the RDP service is encrypted using Secure Socket
Layer (SSL). Any potential attacks are presumed to origin
from the Internet (modelled as Hacker computer). Most
modelled entities also have various countermeasures
detailed. For instance, Windows XP SP3 is not completely
developed in languages “safe” to buffer overflows
(WindowsXP_SP3.OnlyUseSafeLanguages = False), but has
been probed for vulnerabilities by various security experts
(WindowsXP_SP3.HasBeenScrutinized = True).

 C I R E D 22nd International Conference on Electricity Distribution Stockholm, 10-13 June 2013

Paper 1109

CIRED2013 Session 3 Paper No 1109

Figure 2. A CySeMoL model of the example substation automation architecture.

Figure 3. An attack path of a social engineering attack in the example architecture.

When the CySeMoL model has been completed the
modeller specifies a source and target of the attack. In this
scenario, the source is the Hacker computer and the target is
to gain access to the HMI. When these constraints have
been specified the modeller presses can automatically have
all possible attacks possible for the scenario calculated by
the tool. For the present scenario, 30 different attack paths
(chains of attacks) are available. The most likely attack path
has a 75% likelihood of success (cf. Figure 3). The essence
of this attack path involves social engineering the technician
into providing his or her credentials for the HMI and then
use the remote login service to access it. Now pose that the
enterprise wish to evaluate the likelihood of this attack path
given that the technician undergoes security awareness
training. To enable this analysis, the modeller adds the
entity SecurityAwarenessProgram, sets its state to True,
relates it to Technician and runs the analysis again. The
likelihood of the social engineering attack being successful
(step 4 in Figure 3) is now reduced to 30%.

CONCLUSIONS AND FUTURE WORK
The CySeMoL enables cyber security analyses of enterprise
architectures without requiring any major cyber security
knowledge of the modeller. However, the model is still very
much a prototype. Currently, we are working on extending
its functionality to include, e.g., time estimates for different
attacks, web application attacks [8] and network
vulnerability scanning [9]. We are also planning to conduct

more case studies to estimate the usability and ease of use of
CySeMoL.

REFERENCES
[1] R. Lippmann, “Netspa: A network security planning

architecture,” Massachusetts Institute of Technology, 2002.
[2] J. Homer, K. Manhattan, X. Ou, and D. Schmidt, “A Sound

and Practical Approach to Quantifying Security Risk in
Enterprise Networks,” Kansas, 2010.

[3] S. Noel, M. Elder, S. Jajodia, P. Kalapa, S. O’Hare, and K.
Prole, Advances in Topological Vulnerability Analysis.
Washington, DC: IEEE, 2009, pp. 124–129.

[4] T. Sommestad, M. Ekstedt, and H. Holm, “The Cyber
Security Modeling Language: A Tool for Assessing the
Vulnerability of Enterprise System Architectures,” IEEE
Systems Journal.

[5] T. Sommestad, H. Holm, and M. Ekstedt, “Effort estimates
for vulnerability discovery projects,” in HICSS’12:
Proceedings of the 45th Hawaii International Conference on
System Sciences, 2012.

[6] R. Cooke, Experts in Uncertainty - Opinions and Subjective
Probability in Science. New York, New York, USA: Open
University Press, 1991.

[7] M. Buschle, H. Holm, T. Sommestad, M. Ekstedt, and K.
Shahzad, “A Tool for automatic Enterprise Architecture
modeling,” in Proceedings of the CAiSE Forum 2011, 2011,
pp. 25–32.

[8] H. Holm, M. Ekstedt, and T. Sommestad, “Effort estimates
on web application vulnerability discovery,” in Hawaii
International Conference on System Sciences 46, 2013.

[9] H. Holm, T. Sommestad, J. Almroth, and M. Persson, “A
quantitative evaluation of vulnerability scanning,” Information
Management & Computer Security, vol. 19, no. 4, p. 2.

	ABSTRACT
	Introduction
	The Cyber Security modelling Language
	An example use-case
	Conclusions and future work

