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ABSTRACT 
Increasing amounts of local power generation and loads 
are challenging the management of low voltage (LV) grids. 
This paper proposes a low voltage grid monitoring and 
control solution enabling a grid operator to: 1) assess 
available capacity in an LV grid for planning purposes, 2) 
provide grid constrained electrical vehicle (EV) charging 
control, and 3) optimize the injection of photovoltaic (PV) 
energy in the grid. The ability to increase LV grid 
utilization and to minimize critical grid events are shown in 
Park & Ride and Shopping Mall EV charging scenarios. 
Relying on the prediction of domestic demand and PV 
generation, the ability of the EV charging strategy to 
handle prediction errors is analyzed. 

INTRODUCTION 
Two factors, that will threaten the power quality in the low 
voltage grid in the future, are the massive deployment of 
distributed generation (DG) using renewable resources 
(photovoltaic, wind) and of charging stations for electric 
vehicles. In order to tackle these and other future problems, 
it is necessary to gradually replace the current, tedious and 
inaccurate offline grid planning process, which is usually, 
based on standard profiles, with an automated, online 
process.  
In this paper we propose a grid component called low 
voltage grid controller (LVGC) that enables: 
● Online monitoring of the LV grid using existing smart 
meter data to provide a grid state estimate 
● Computation of a feasible region in which the grid can be 
loaded within grid constraints (voltages, currents, 
transformer limits, etc.) considering fairness among users 
● Planning the Electrical Vehicle (EV) demand under 
uncertain forecasts of photovoltaic (PV) generation and 
domestic power. 
● Controlled EV charging and limitation of PV active 
power in case of over-generation. 
 
Recent work shows that new LV grid load scenarios from 
e.g. electrical vehicles require a degree of control [1]-[4].  
Analysis on macroscopic level shows how smart-charging 
allows an increase of EV penetration to more than 50% 
without overload of current grids (Portugal [1]), while the 
authors of [3] show how grid investments can be reduced 
by up to 25% for transformers with 75% of household 
owners owning a car (year 2040 scenarios, Holland). For 
household charging scenarios (aiming for 100% charge) 
different control techniques have been proposed. Key 
examples area) basic house-hold peak avoidance 
approaches [3] b) dynamic charging intensity control co-

optimized with grid constraints for energy loss optimization 
[4],and c) sophisticated charging schedule planning on a 
day basis based on historical trip forecasting, desired load 
curves (price controlled) and grid constraints [2].  
Our work recognizes the recent approach of [2] to derive 
power limitations on busses in LV grids for EV planning 
purposes, but extends the view by: 
● Proposing a new formulation of how available power 
resources are estimated to ensure fair allocation of free bus 
resources, with applications for both planning, charging 
control and general control purposes.  
● Proposing an explicit smart meter based architecture for 
LV grid management enabling short-term (15 min) 
adaptation of charging schedules based on: plug-in events 
and changes in the available power resources (caused by 
errors in the load prediction and PV output). 
● Defining a smart charging control approach aiming to 
eliminate grid overload events. 
● Studying new EV public charging scenarios (Park & Ride 
and Shopping Center). We clarify their different 
requirements and the achieved charging service quality 
when minimizing grid events and accommodating to 
photovoltaic production. 
 
The rest of the paper is structured as follows: in Section 2 
we describe the system high-level architecture.  Section 3 
presents details on the developed control and support 
mechanisms. In Section 4, we present results from selected 
evaluation scenarios, and finally in section 5 conclusions 
and further research directions are provided. 

2. SYSTEM ARCHITECTURE 
The architecture studied in this work is based on a LV Grid 
Controller (LVGC) located at a secondary substation level, 
as depicted in Figure 1. A main motivation for this 
approach is to utilize the availability of smart meter 
measurements and provide grid operators new options for 
LV grid management. In practice the LV grid controller 
enables the following features: 
A) Online LV grid monitoring that enables operators to 
identify situations, where real consumer patterns frequently 
lead to grid events. A grid event is here defined as an over-
current (OC), over-voltage (OV) or under-voltage (UV).   
B) What-if analysis to enable simulated deployment of new 
EV charging stations or PV generation which may be power 
curtailed in certain cases. C) Provide online load and 
generation management here emphasized by electrical 
vehicle charging control as well as power limitation control 
of photovoltaic systems. This paper only focuses on the 
charging control. 
This proposed architecture is compatible with other 
hierarchically controlled smart grid architectures. Thus, 
future versions the LVGC will comply with the objectives 
of virtual power plant controllers [6]. In its current version, 
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a stand-alone solution may however be integrated by grid 
operators to provide services as described in A)-C) 
independently of other control architectures.  
 

 
Figure 1 - Architecture for LV grid control 

 
The LVGC operates in the following manner. A smart 
metering system collects periodically (every 15 minutes) 
metering data from smart meters (in households and at 
charging points). Based on meter observations, a local 
prediction function that uses historical measurements 
further predicts household consumption and local 
generation. Based on observations and prediction data, three 
mechanisms are executed: 1) A grid state estimator that 
performs a power flow calculation and logs/reports alarms 
in case grid constraints are violated. It uses a local model of 
the grid topology and parameters. 
2) A control mechanism to reduce the output of PV 
inverters in order to prevent overvoltage and overcurrent. 3) 
An electrical vehicle charging scheduling algorithm that 
produces and maintains a rolling schedule based on EV 
plug-ins, currently charging EVs and EV departures. The 
schedule is constrained by a profile of the available power 
resources on the bus of charging point attachment. At 
vehicle plug-in events, the scheduler further receives from 
the vehicle: plug-in time, desired energy to be charged (in 
the following a desire for full battery is assumed) as well as 
supported charging speeds.  
The scheduler also needs to know the expected stay 
durations of individual cars. However, as such information 
would require particular user interaction and assumptions of 
new features in electrical vehicles, it is considered that the 
scheduler itself estimates the expected stay duration based 
on learned user statistics for a given charging station. It 
should here be noted that a grid operator may not be 
interested in running charging control operations. In such 
cases, a valid solution could be to locate the scheduling 
functionality in local controllers situated at the charging 
stations. This aspect is not considered further in this paper.  
In the following section, details of the available power 
estimation and scheduling approach are provided. 

3. ENERGY CONTROL MECHANISMS 

3.1 Available Power Estimation 
The available power is defined as the maximum charging 
power at a grid bus, before any voltage or current constraint 
in the grid is violated. In order to calculate the available 
power Pav[k] for all the nodes k, we saturate the grid by 
maximizing the percentage EVg of the allowed EV charging 
power at each node, EVmaxk. We call this modified OPF 
problem Proportional Maximum Power Flow (PMPF), 
equations (1)-(5). The power flow equations (2)- (3) take 
into consideration the PV generation (Pgk, Qgk), the 
domestic loads (Pk, Qk) and the proportional EV load     
EVg • EVmaxk.  
PMPF: 
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The constraints refer to a) voltage limits for each bus 4, b) current magnitude limits for each
branch 5, and c) Transformer power limits ??. The practical problems are the normalization
constants of powers and currents.
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If one maximizes the total charging demand, instead of 
EVg, then those locations, which are near to the feeder, will 
be better served than the locations far away from it. The 
reason for that is, that a shorter power path consumes less 
resources and will violate current limits at a higher level 
than a longer path transporting the same power. However, 
this kind of allocation is unfair because the remote parking 
lots starve, whereas the closer locations will be served to a 
high percentage. Therefore, the proportional allocation 
provides better fairness. Fairness can also be applied to 
represent future extension options in other busses. Thus, it 
can also be used as a feature for operators to pre-plan free 
bus resources e.g. for future EV charging points.  
The PMPF problem is solved for several timeslots into the 
future based on the predicted load and production. The 
resulting variables EVg • EVmaxk form an available power 
array, which defines the feasible region for EV loads at 
every grid bus.  Based on this load upper bound, a discrete 
scheduling algorithm can be used to schedule the cars as 
needed.   

3.2 EV Scheduling 
A scheduler component controls the start and end of 
charging times of individual EVs at a charging station. The 
objective of the scheduler is to maximize for all cars the 
percentage of the demand actually charged in the available 
(parking) time. The scheduler can select between different 
charging speeds (Low: 3.7kW, Medium: 8kW and High: 
11kW), but as lower speeds leads to less component wear 
these are preferred. In the same time, the cumulative load 
shall not exceed the available power at any time. In order to 
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achieve a feasible solution, the charging interval is shifted, 
or shortened by selecting a higher charging speed. The 
scheduler can also choose to reduce the targeted battery 
demand (which by default is 100%) to allow some charging 
rather than rejecting EVs . The optimization problem (also 
called bandwidth allocation problem) has been described in 
detail in [3] and the references therein.  

4. EVALUATION RESULTS 

4.1 Evaluation Methodology & Scenarios 
In this paper, the overall evaluation aims are to clarify the 
impact of control using dynamically available power (Pav) 
compared to no control or other conservative planning 
approaches. We study two deployment scenarios of a 
Shopping Centre (SC) and a Park & Ride (P&R) with, and 
without, collocated PV generation. 
To evaluate the proposed control architecture and its impact 
in different scenarios, the system has been integrated in an 
emulation framework. The latter enables to playback real 
smart meter data measurements from households as well as 
to run different e-mobility models. 
To consider the challenges faced in a real LV grid, KELAG 
Netz has provided topology, line data, 400 kVA substation 
data and smart-meter data from a LV grid in Kärnten, AT. 
In summary, the grid consists of 156 households, 96 timer 
controlled water heaters and 1 small enterprise distributed 
over 11 feeders. Smart-meter data (15 min sampling time) 
is available from 1/3 of the meters, but has been 
extrapolated to cover all consumers. 
The grid model and emulation framework enables different 
configurations of charging places and PV generation. For 
the studied scenarios both 50 kWp PV generation and a 
charging station with 35 charging spots are located on the 
same bus, situated 4 busses away from the feeder. 
The grid limits are defined on bus voltage (±5%), line 
currents (60% of nominal capacity) and transformer 
capacity (80% of nominal capacity).  
The two scenarios mainly differ by their traffic model: 
Park & Ride: Bursty independent arrival of 35 cars in 
interval from 07.00-09.00. Demand is normally distributed 
(µ=6kWh, σ= 1000Wh), corresponding to 30 km driven 
before arrival. The stay duration is normally distributed: 
(µ=7.5h, σ=0.5h). 
Shopping Centre: 110 cars arrive between 06.00-20.00 
according to a mobility profile obtained from a real EV user 
study [7]. The demand is between 3kWh (06.00) and 
increases linearly with the time up to 10kWh. The duration 
of stay is normally distributed (µ=2.5h, σ=0.5h). 
To capture both the charging service received and the grid 
impact, the following metrics are evaluated: Total Energy 
Charged, Number of grid events observed, Fraction of cars 
getting full charge. 
The controller is configured to run every 15 min. A run 
manages the latest EV events, leads to a calculation of a 
new Pav[k] array and a new schedule and charging speed 
assignment (if needed). It is assumed that new smart meter 

data is available for each run. For non-controlled scenarios, 
cars are assumed to charge at low speed (3.7kW) until they 
plug-out or are fully charged. 

4.2 Charging Control Results 
Figure 2 depicts the resulted EV load in the Shopping 
Centre scenario during a normal weekday in April assuming 
perfect prediction of household loads and PV production (6 
hours ahead).  
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Figure 2 - Shopping Centre Scenario. 

 
The figure shows Pav with and without a PV system 
installed. No EV loads are planned on other busses. A 
nominal level of 95 kW is available except around 01.00 
and 15.00 where water heaters are operating. With PV, a 
higher Pav is obtained, as expected. Note that the controlled 
charging load closely follows the dynamically calculated 
Pav (here displayed for a case without PV). 

 
 

Energy 
Charged 
[kWh] 

Grid Events 
[#] 

Full Charge 
Fraction [%] 

P&R, (REF) 
No Control  

199.52 12 (OC) 100  
199.52 7 (OC) 100  

P&R, Static AP 
No Control 

89.44  
 

0 45.70 

P&R,  
Dynamic Control  

191.98±2.38  0  84.60±1.9  
192.30±2.2  0  87.42±2.9  

Shopping, (REF) 
No Control 

662.66  35 (UV+OC)  68.2  
662.66  13 (OC)  68.2  

Shopping, Static 
AP, No Control 

418.96 
 

0 48.00 

Shopping, 
Dynamic Control  

562.61±4.5  0.4±0.8 (OC)  51.00±1.2  
593.55±3.7  0 58.94±1.5  

Table 1 – EV charging results for Park &Ride and 
Shopping Centre scenarios. Grey rows represent cases 
where 50 kWp photovoltaic is installed. 
 
The results summaries for all scenarios are presented in 
Table 1. Reference scenarios (REF) show the full demand. 
95% error bounds are provided for 5 repetitions as the 
scheduler does not provide deterministic solutions. 
We start by considering results with no PV installed. In the 
P&R case, long stay durations enable all cars to fully 
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charge. Due to short stay durations, this is not true for the 
SC case.. In both cases several grid events occur. Without 
control, a conservative planning approach would be the 
typical way to avoid grid events. Here, a fixed static power 
limit can be derived. In this case, such a limit has been 
identified (61.6 kW – see Figure 2) using a 99% percentile 
of available power distributions for a whole year of smart 
meter data (considering that short-duration overload 
situations can be accepted). Based on the fixed power limit, 
a maximum capacity of 16 charging points has been 
identified. As can be observed, this configuration does not 
lead to grid events, but nearly half of arriving cars are being 
rejected (no parking place). Considering instead the same 
scenario with controlled charging, close to zero grid events 
are generated, but a significant increase in charged energy 
for both scenarios is achieved. It should here be noted that 
the few grid events observed in the controlled case are of a 
limited magnitude (~3A larger than the line limit of 165A). 
They can be attributed to delayed “stop charging” signals to 
cars not planned to fully charge. In the current 
implementation such signals are only sent every 15 minutes. 
The results show that the used smart charging scheme 
enables to provide more charging points and thereby fewer 
rejected EVs than static scenarios. The best gain is here 
achieved, when parking durations are large as in the P&R 
scenario. Adding PV power to the controlled charging 
shows improvements primarily for the shopping scenario. 
One reason is the correlation of sun hours and charging 
need. Moreover, in case of short stay durations the 
controller can utilize the increase in Pav to raise the charging 
speed and improve thereby the charging performance. 

4.3 Impact of Prediction Errors  
In reality, Pav will be subject to errors in the prediction. 
Assuming that the error increase with α%/h into the future 
starting at 0% at t=0, the following prediction model is 
defined: 

P(t) =O(t)(1 + α*t), 
WhereP(t) is a prediction vector of either household loads 
or PV production andO(t) is the real value (perfect 
prediction).  
 

 Energy 
Charged 
[kWh] 

Grid Events 
[#] 

Full Charge 
Fraction [%] 

+28.8%/h 553.31±2.8 0 48.4±1.4 
+14.4%/h 558.40± 4.1 1±0.9 50.72±2.2 
Perfect Prediction 562.61±4.5 0.4±0.8 51.00±1.2 
-14.4%/h 564.54±7.9 1±1.2 52.0±1.7 

-28.4%/h 564.16±3.3 1±1.2 53.12±1.8 

Table 2 – Impact of Prediction Error (Shopping Centre) 
 
The results for the Shopping Centre scenarios without PV 
installed are summarized in Table 2. Most predominantly, 
the high positive simulated prediction error in the left 
column causes a slight decrease in charging efficiency (the 
overestimate in household loads corresponds to an 

underestimate in the available power). On the contrary, a 
negative prediction error leads to a overload schedule (more 
grid events). Generally, it can however be concluded that 
the periodically updated scheduling provides high 
robustness towards prediction errors, given that such errors 
can be continually reduced through new measurements.  

5. CONCLUSIONS 
The presented work proposes mechanisms to plan and 
schedule the charging of electric vehicles in a low voltage 
grid. The power upper bound to be used for charging is 
calculated for scheduling the EV demand. This method 
makes the tacit assumption that the LV grid infrastructure is 
currently the main energy bottleneck for massive EV 
charging. Future work will consider additional schedulable 
loads such as storage, and demand constraints at the LV 
level as a whole.    
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