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ABSTRACT

Low voltage direct current (LVDC) distribution systems
have the potential to be considered as an enabler of
increased penetration of distributed renewables, electric
vehicles, and heat pump systems. They do however
present significant challenges for understanding fault
behaviour and effective protection systems. This paper
presents these challenges, and investigates the
effectiveness of using 1EC61660 for the short-circuit
characterisation of LVDC networks.

INTRODUCTION

Low voltage direct current (LVDC) distribution sgghs
have been used for many years in different apjdinat
They have been widely used in auxiliary installasion
power plants and substations. LVDC systems are also
considered a good solution for many transport
applications such as electric traction systems tduthe
wide usage of DC motors, and also as a good salimio
aircraft power systems and electric ships due t® th
enhanced controllability of DC [1]. Recently, theove
toward using DC devices in utilities has been rgpid
growing, and LVDC distribution systems have beeedus
for new applications such as powering differentediz
data centres [2]. With the help of modern power
electronics and advanced smart grid technologiess i
believed that LVDC power systems have the poteiuial
be considered as a valuable component of futuretsma
grids [1]. More intelligent monitoring and contspland
better generation and use of energy could be affese
LVDC systems [2]. The potential benefits of LVDC
systems will be discussed further, in the nextisacof
the paper.

However, the implementation of LVDC systems
introduces new components that can make powerragste
more complex [3]. A new complex arrangement ofedix
AC and DC will emerge. And in order to make LVDC
distribution systems technically feasible and cotibye
with existing AC systems, an understanding of other
behaviour under different operating conditions is
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protect LVDC networks optimally [1]. The most sig
used standard for DC short-circuits characterisai®
IEC 61660 [5]. This standard has been mainly thiced

for providing a calculation method for DC shortetiit
currents in auxiliary DC installations in power ipis and
substations. IEC 61660 introduced an approximate DC
short circuit current form to identify the transieand
steady-state courses of a DC fault current pradfilsuch
auxiliary DC systems. LVDC power networks will have
different and larger configurations and severafedint
sources in comparison to these auxiliary systems.
Consequently, it may not be appropriate to use IEC
61660 to calculate the values and forms of shocti
currents in LVDC networks. Inaccurate short-circuit
estimation would have a negative impact on theesyst
performance under faults. Therefore, this papeluatas

the effectiveness of using IEC 61660 to charaadn€
short-circuit currents in an LVDC network. The pape
also investigates the potential benefits that LVDC
distribution systems will offer for future powersigms.

POTENTIAL BENEFITSOF ANLVDC

Due to its better controllability, and the possthilof
implementing a higher voltage as allowed by EU (VD
2006/95/EC [7], an LVDC system has the potential t
overcome some of the traditional LV system
constraints [6]. Using LVDC with a higher voltagell
reduce the impact of thermal limits, and increase t
transmission power capacity of the networks [4]isTin
turn will increase the possibility of expanding existing
system to supply a higher load without uprating the
MVI/LV transformer or adding new cables. The resolts
the research in [8] have shown that with the saafiage
drop and the same cables (as used for 3-phase &C),
unipolar 1.5kV LVDC system can transmit 16 timesreno
power than a 0.4kV AC system. Also, with a higher
voltage rating, smaller losses in voltage and powir

be experienced in DC feeders. In DC systems, the
inductances have no effect on the voltages durargral
operation, and the reactive current component which
increases the magnitude of the current resultinmane
losses, does not exist. In addition, the skin eftbat
normally increases the cable resistance in AC nédsvo
has no impact in DC cables. For new installatioh, a

necessary. For example, as the system becomes morethese positive points would increase the opponuaft

complex new forms and types of faults will be
introduced, and different system responses are
anticipated [4]. Consequently, characterising LVDC
short-circuits is significantly important, as appriate
equipment ratings and correct protection operafion
terms of settings and selectivity are highly based
accurate short-circuit characterisation.

To date, there are no comprehensive standardofeitd
characterise LVDC short-circuit currents, and haw t

CIRED2013 Session 5 Paper No 1330

using smaller cables with lower costs, and indiyect
reduce the environmental impact of energy produactio
For example, up to 20% cable cross section can be
reduced in each conductor when the cable is used to
deliver the power by a DC grid instead of AC [8k
another example of LVDC potential benefits, theyver
recent research conducted by the Electric Poweedrels
Institute (EPRI) has concluded that using 380V LViaC
supply small and medium sized data centres instéad
traditional distribution systems will improve thieetrical
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efficiency up to 15% and with 36% lower lifetime
cost [2][10]. Also, ABB has reported that the est
1MW 380V DC network which was built in 2012 to
supply a medium sized data centre was 10% lessttiean
AC system in terms of capital costs [2].

An LVDC distribution system will also facilitate ia
better way the connection of microgeneration andagie
devices in comparison to traditional LV systemd][1
Most microgeneration and energy storage devices

feeder. Faultl, shown as F1 in Figure 1, is appdiethe
terminals of the converter, and the other faultd~B2are
applied at 500m, 1km, and 2km away from the comvert
terminals respectively. These fault scenarios hasen
applied to capture DC fault current features fdfedént
fault locations and because the correction faaises! in
IEC61660 change when the fault path impedance is
changed. At each fault location, the DC fault is
characterised in accordance with the IEC61660 stahd
and by simulation studies, and a comparison is thade

generate DC outputs. These devices can be connectedto evaluate the effectiveness of using IEC61660tlier

directly or by DC/DC converters to LVDC networksn A
LVDC network is also more suitable for the conneti

of large numbers of DC power consuming devices. The
need for using large numbers of adapters to cor23aY

AC to lower voltages and then convert into DC can b
removed, resulting in reduced losses and saved[@bst
The transformers used for the adaptors of consumer
electronic equipment can cause considerable losses
during stand-by mode. As stated ing8dl ac¢cording to

the International Energy Agency (IEA), in the Elbet
total domestic consumption of electronic equipmint
stand-by mode has been estimated to be more than 36
TWh/year [9]. Therefore, many conversion steps fo
sources and loads can be reduced, and the losses an
costs can also be reduced in comparison to thevalgui

AC system [12].

TEST NETWORK

A typical LV distribution network based on actuadta
has been selected as the test network. The netsaiek
has been derived from information provided within
distribution long term development statements (LTDS
by the distribution network operators and manufiasti

of distribution equipment [13]. The AC medium \age
(MV) 11kV network has been modelled using an ideal
voltage source and impedance with X/R=5 scaled in
accordance to IEC60909 [14] to provide a fauleleof
156MVA at the ring main unit (RMU) supplying the
secondary substation. An impedance of 4.5% andgati
of 0.5MVA has been taken for the secondary sulustati
transformer (11/0.433kV). The LVDC network is
interfaced to the AC system by IGBT-based Voltage
source converter (VSC) with smoothing capacitor
C=6750uF. The VSC has the ability of allowing the
transfer of the power in two directions between A
DC systems. This is important when LVDC is integcat
with local generation, and the power is exchanged
between the AC and DC system. However, the VSC will
introduce new losses to the network, and its coméition
has a direct influence on the AC and DC system
performance during fault conditions [15]. The VSC
normally consists of controllable IGBT switches and
uncontrollable antiparallel diodes plus smoothing
capacitor. The smoothing capacitor on the DC sidk w
also contribute to the DC short-circuit. The LVDEst
network is assumed to be unipolar network providing
612V DC between the two poles. The parameters ef th
used LV cables are Rdc=0.184&m, and L=0.24mH/km.

Figure 1 shows the single line diagram of the nestvork
used for the studies. A short-circuit fault betwéles two
DC poles is applied at four different locationstbe DC
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short-circuit characterisation of LVDC.
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Figure 1: LVDC network model

LVDC SHORT-CIRCUIT CHARACTERISA-
TION IN ACCORDANCE WITH IEC 61660

IEC61660 takes into account the following compogsent
as DC fault sources; rectifier bridge, stationaajtéries,
smoothing capacitors, and DC motors [4]. Each DC
source will supply a different profile of fault cent.
However, IEC61660 has introduced a typical shaouit
current form as given in equations (1) and (2)eforesent
approximate transient and steady-state featureD®f
short-circuit current that could be supplied by slich
sources [4][5]-

1-e~t/T1

il(t)=l'p1_eT/T1 OStStp 1)
ttp
i,(t) =ip[(1—§—’;)e 72 +§—’;] t=t, 2)

Wherel, is the steady-state short-circuit curraptis the
peak currentt, is the time to peak, andandr, are the
rise and decay time constants. In the case ofsfatlie
above equations can be directly used to identiéy DIC
fault current supplied by each individual sourche Total
DC fault current is then the aggregate of the imtdial
fault contributions.

When IEC61660 is used to characterise the DC short-
circuits current of the test network in Figure Here are

no DC motors or batteries, and only the main caever
and smoothing capacitor are considered. The DC faul
current contributions from the converter and thgacitor

to each fault location as shown in Figure 1 areuated

by IEC61660 as follows, and the total DC short4gitrc
current is calculated by adding both currentsirckided
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in figures (2-4).

Converter characterisation

By using the equivalent circuit diagram given agpife 6
in the IEC61660 to represent the test network shofvn
this paper, the DC steady-state fault currgnsupplied
by the converter can be calculated from the foliavi
formula [5].

I, = ADM
V3 /R§+X§
R, andX, are the equivalent resistance and reactance of
the upstream AC gridlj,, is the nominal rms AC L-L
voltage, and’, is the voltage factor. The voltage factor as
explained in IEC61660 is used in accordance to
IEC60909 [14]. C, =1.1 to give the highest short
circuit [14]. Ap is a corrective factor that reflects the
impact of DC resistance on the steady-state fauteat.

The value ofi, at each fault location can be obtained
from the curves of figure 7 in IEC61660 [5};, depends

on the values oR,./R,; andR,/X,. Ry/X, of the AC
system equals to 0.R,. changes in accordance to the
fault location on the DC side. Whe,. = 0 for the fault

F1 as shown in Figure 2, = 1, and for remote faults
F2, F3, and F4 as the,, increases, the values bf < 1.

The value ofi, is calculated from (3) for each value of
Ap. The peak short-circuit currei}; KpI,., where the

factor K, depends or.;./Ly, and 1+ 2R"“) and can
Xg

be obtained from the curves of figure 8 in IEC61$5D
Using the test network parameters, the value§,ofiave
been found for all the faults to be larger than.olfe
Kp = 1.05 and L. /Ly <1 as mentioned in IEC61660
standard, the time to the pegkcan be calculated from
this formulat, = (3k, + 6)ms. Based on thé, values,
the peak current, for each fault location is calculated.
The rise and decay times of the converter trandeant
current have been calculated from the following
equations [5]:
r1_2+(1<D—09)(25+9 )

7, = 2/[(Ry/X,) (0.6 + 0.9 Rdc/Rg)] ms

3)

ms

(4)
©®)

Based on this information, the DC short-circuit remt
profile supplied by the converter has been caledlat
from equations (1) and (2).

Capacitor characterisation

The steady-state fault current of the capacitgr= 0.
The capacitor peak fault current can be obtainedn fr
ipe = Kc(Vc/Rqc), WhereV is the capacitor voltage
before the fault, and is equal to thg, = 612V. The
factor K. and the peak time of the capacitor fault current
tpc have been calculated from the curves of figurend@

13 in IEC61660 for each fault location, aid has been
determined. The rise and decay time constants ean b
calculated fromr;. = K¢qtpe, andt,, = KeRq C. C is
the capacitance of the smoothing capacitor andlgdqoa
6750uF, andK;, and K., have been obtained from
figurel4 and 15 in IEC61660. Then the transientesur
contribution from the capacitor has been calculdteth
equations (1) and (2).
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MODELLING AND SIMULATION STUDIES

The PSCAD/EMTDC simulation programme was used to
model the same test network. When the fault igaiteit,

the IGBTs are normally blocked for self-protecti@md

the charged smoothing capacitor will immediately @

a significant DC fault source, and starts feedhmg fault.
When the current peak is reached, the capacitor is
completely discharged, and the capacitor currefitges

to zero. Then the antiparallel diodes act as agberid
rectifier and continue supplying the fault duringet
transient [15]. After the transient dies out, sieady state
DC fault current will be supplied by the grid. Théore,

in order to model these three short circuit phgsesthe
capacitor discharge phase, the anti-parallel diodes
conduction phase, and the grid current-fed phabe),
converter has been modelled as six pulse rectifién
smoothing capacitor on the DC side, since the IGBTs
switches will be inoperative during the short citoon

the DC side. Such a model will also give the w@&t
fault scenario where no converter control action is
implemented, and the highest DC short circuit can b
identified. The same fault scenarios as showrignreé 1

are considered in the simulation studies, and ttpub
results are included in Figure 2 to Figure 4 witloste
calculated by application of IEC61660.
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Figure 2: DC fault at the terminals of the converte
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Figure 4: The rise times of DC remote faults
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