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ABSTRACT 

This paper discusses the application of a closed-loop 

state estimator for improving situational awareness in 

distribution systems. A predictive database is created 

and applied to forecast future network states, in order 

for short-term (e.g. day-ahead) planning to be carried 

out. This can be used to provide early warning of 

potential network issues and more optimal management 

of distributed energy resources. The predictive database 

is based on adaptive load forecasting models, which are 

continually updated based on feedback from the state 

estimator. The methodology is demonstrated using data 

recordings from an actual MV distribution network. 

INTRODUCTION 

Recent years have seen a large increase in the 
penetration of Distributed Energy Resources (DER) in 
MV and LV networks, including Distributed Generation 
(DG), demand responsive loads, and storage devices. 
This has resulted in a much higher level of variability 
and complexity in distribution network operation, and 
the need for better situational awareness and a more 
pro-active system support. Hence, there has been 
considerable interest in adopting a number of 
operational techniques, previously only used at the 
transmission level to distribution systems, such as state 
estimation and short-term operational planning [1]-[4]. 
This paper presents a methodology for short-term 
operational planning (e.g. hours/days-ahead analysis) of 
distribution systems with DER. The approach uses real-
time and historical measurement data from LV smart 
meters and/or MV SCADA, and information on local 
weather conditions to develop a predictive database for 
forecasting demand and DG outputs at each network 
node. This allows load/DG to be forecasted, and the 
future states of the distribution network to be estimated 
using Distribution System State Estimation (DSSE).  
The predictive database is continuously updated and 
improved based on feedback from the DSSE and the 
real-time measurements from the network. This creates 
a closed-loop information flow, which allows the 
network operator to estimate the distribution system 
state accurately, even when measurement data are 
missing (e.g. due to metering or communication errors), 
or in hours/days ahead analysis of the system for short-
term operational planning. This approach can help to 
provide early warning of potential network issues and 
allow more optimal scheduling and management of 
DER. The analysis is carried out using a case study of 
the MV distribution network in [5], for which detailed  

 
 
 
recordings of demand and generation are available at the 
end-user (home/factory level) and at the MV substations 
(10:0.4 kV transformers). 

METHODOLOGY 

Overview of Methodology 

The input data to the system are static network 

parameters (bus and branch information), along with 

measurement data (e.g. real-time recordings of V, P, or 

Q at any bus/branch in the network), and/or pseudo-

measurements (estimated or forecasted load demands 

and/or DER output). The approach is also designed so 

that the user can operate in “real-time” mode, applying 

real-time measurements from the network in the 

analysis, or in “forecasting mode” to carry out 

hours/days-ahead analysis of the system. In forecasting 

mode, all of the inputs to the system are pseudo-

measurements, based on short-term forecasts of demand 

and DG outputs. These data are fed to a robust DSSE, 

which identifies bad data, such as erroneous or missing 

values in the input measurements. This allows network 

analysis, such as power flows and contingencies to be 

carried out accurately. Finally, in the post-processing 

phase, trending or out-of-control parameters are 

identified, and warnings, alarms and recommendations 

are provided to the network operator. One of the novel 

aspects of this approach is the use of feedback from the 

post-processing phase, which makes the DSSE a closed-

loop system. This allows the predictive database and 

forecasting tools to be continually updated as more real-

time data becomes available. This approach is in 

contrast to most DSSE methods in the literature which 

are open-loop. Fig. 1 shows a flow chart of the overall 

methodology. 

Robust Distribution System State Estimation 

State estimators (SEs) have been a standard feature of 

transmission network operation for many years, where 

they are applied to improve the observability of the 

network and reduce the impacts of noise and errors in 

system measurement data. Since the characteristics of 

distribution networks are fundamentally different from 

transmission networks (e.g. high R/X ratios, radial 

configurations, reduced quantity and quality of system 

measurements), many of the well-established techniques 

used in transmission SE cannot be applied directly. 

Recently, a number of SEs specifically intended for 

distribution systems have been proposed [1-2, 7-8].  
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Figure 1 - Flowchart of methodology 

Input Data and Observability 

The observability of any power network depends on the 

number, type and locations of the available 

measurements. This can be determined by examining 

the null space of the network measurement Jacobian 

matrix according to the method in [6]. If the network, or 

any parts of it, cannot be observed, estimates of the 

demand and DG output are used to provide pseudo-

measurements of power injections at each relevant 

network node. Therefore the DSSE may use various 

combinations of input data, comprising (in order of 

decreasing accuracy) of: (i) real-time measurements, (ii) 

load pseudo-measurements, and (iii) forecasts of future 

load/DER outputs. Each of these input data types 

potentially contains significant noise and gross errors. It 

was found that a least-squares estimator based on robust 

statistics [9] was required to produce acceptable 

performance in this application. Estimators based on 

robust statistics are particularly suited to dealing with 

gross errors and outlier values which can cause 

computational problems for conventional SEs. 

DSSE Procedure 

Most DSSE algorithms operate by minimizing the 

conventional Weighted Least Squares (WLS) objective 

function [7]: 

 

                        ( )      ∑    
 
   (   ( ))   (1) 

                      (   ( ))
 
 ̅̅̅(   ( ))  (2) 

                   (   ( )   )   ( ̂)     (3) 

where     is the weight for measurement i, z is the input 

data vector, h(x) are the measurement functions, x is the 

state vector,  ̂ is the estimated state vector,   is the 

measurement error,  ̅̅̅ is the measurement weight matrix, 

and r is the vector of measurement residuals. The 

weights in the diagonal of  ̅̅̅ are set according to the 

variance   
 , of each meter (in the case of real 

measurements), or the variance of each load forecast (in 

the case of pseudo-measurements). This is so that the 

SE solution gives more weight to measurements which 
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Equation (2) is solved iteratively as follows: 
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where n is the number of iterations. However, it was 

found that in the presence of significant input data 

errors, the conventional WLS approach can have 

computational issues which result in the SE becoming 

insoluble. These problems are caused by poor 

conditioning of the network Jacobian matrix H, which 

results in difficulties inverting H to form the gain 

matrix   (   ̅ ). These issues were overcome by 

applying the equivalent weight function proposed in [2]. 

The diagonal measurement weights matrix  ̅̅̅ is 

modified as follows:  

 
                     ̅̅̅      ( ̅   ̅     ̅ )   (8) 

where the equivalent weights  ̅  are re-calculated at 

each SE iteration: 
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Also i, j     2   N, α    .4 8, β is a small constant added 

to avoid division by zero, and med is the median. This 

iterative re-calculation of the DSSE weights is based on 

the influence function from robust statistics theory [9]. 

It reduces the influence of measurements with extreme 

values which can cause the estimator to break down, by 

decreasing the weights  ̅  if   
  approaches the upper 

threshold   . This inclusion of the equivalent weight 
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function was crucial in making the DSSE robust to 

gross errors, particularly when a large number of load 

estimates and forecasts are applied. 

 

Adaptive Load Estimation and Forecasting 

In order to provide suitable pseudo-measurements for 

the DSSE, the load demand (and DER output) at each 

measurement node in the network must be provided. 

High-quality pseudo-measurements enable the DSSE to 

function effectively, even in cases when there are 

measurement errors or missing data due communication 

system failures, and also for analysis in forecasting 

mode (e.g. day-ahead planning). First, the parameters 

which have a significant influence on demand were 

identified. The analysis identified 8 parameters: two 

weather-related parameters (temperature, dew point), 

three time-related (day, hour of day, and whether or not 

the day is a normal working day) and three historical 

load parameters (previous hour demand, previous week 

equivalent hour demand and previous 24 hour average).  

Comparison of Approaches for Load Forecasting 

The above data can be used to forecast demands using 

various techniques. The most common approaches are: 

(i) Multiple Linear Regression (MLR) analysis; (ii) 

using typical load curves for each user type (e.g. 

residential, industrial); and (iii) Neural Networks (NN) 

[8, 10]. Each of these techniques was applied to 

estimate the load at each of the MV substation nodes in 

the 10kV case study network [5]. In total, there were 43 

loads, comprised of 30 purely residential loads, and 13 

other loads which included factories, as well as some 

district heating and water pump loads (these are 

classified together as “industrial” for simplicity).  

Table 1 shows the Mean Absolute Percentage Error 

(MAPE) obtained using each load forecasting 

technique, for the aggregate system load, and the 

average MAPE values obtained for all of the individual 

residential and industrial loads.  

 

 

Case 

 

Estimation 

Method 

 

Aggregate 

system 

MAPE 

(%) 

Residential 

Loads 

MAPE 

(%) 

Industrial 

Loads 

MAPE 

(%) 

(i) MLR 9.40 15.38 68.84 

(ii) Load curve 8.82 14.71 42.07 

(iii) NN 5.34 11.58 35.17 

Table 1 – Comparison of day-ahead load forecasting results. 

From Table 1 it can be seen that all three techniques are 

more accurate at predicting the overall system aggregate 

demands than individual demands. This is as expected, 

since the individual loads are smaller (individual bus 

peak demands range from 20-400 kW, while the overall 

system aggregate peak is 3.2 MW). Therefore individual 

demands are affected much more by random load 

switching, and have higher variability. The above 

analysis also demonstrates that non-linear methods of 

load forecasting had better performance (NN, case (iii)) 

than linear methods (cases (i)-(ii)). In some previous 

studies on load estimation, it has been noted that non-

linear methods, such as NN, have relatively similar 

performance to more conventional linear methods [10]. 

However, most previous work in this field applies to 

much larger, more aggregated load, e.g. prediction of 

regional or national demands. In this paper, the focus is 

on local-level load estimation (e.g. for few tens to 

hundreds of residential customers). Here the 

relationships between demand and historical/weather 

data are much more non-linear, and conventional 

forecasting techniques do not perform well. For these 

reasons, a NN-based approach was selected. 

Adaptive Load Estimation using Neural Networks 

Autoregressive models are widely used in short-term 

load forecasting. These models combine the use of a 

static load estimation model trained with historical data, 

and recent load measurements from the network. Non-

linear Auto-Regressive Exogenous (NARX) models are 

particularly useful for modelling load times series with 

non-linearities [11]. The NARX model is expressed as: 

 

        (                               )   (14) 

 

where the next value of the output signal (e.g. the MW 

load),     , is regressed using previous load 

measurement values         and the input signals 

        such as time and weather load variables. The 

variables di and do are the number of time delays in the 

input and output layers, respectively, which can be 

adjusted to allow for different forecasting horizons, e.g. 

hour-ahead, day-ahead etc. The function F represents 

the two-layer autoregressive NN illustrated in Fig. 2. 

The neural network weights are indicated by w and the 

autoregressive model coefficients are denoted b. The 

performance of the NARX model is shown in Table 2. 

 

 

Figure 2 – Structure of NARX model. 

 

 

Case 

 

Estimation 

Method 

 

Aggregate 

system 

MAPE 

(%) 

Residential 

Loads 

MAPE 

(%) 

Industrial 

Loads 

MAPE 

(%) 

(iv) NARX 3.30 8.70 27.79 

Table 2 – Day-ahead load forecasting results using NARX model. 
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Figure 3 – Samples of day-ahead demand forecasting results at 

residential and industrial MV/LV transformer substations. 

Samples of the recorded and day-ahead forecasted MW 

demands for selected individual residential and 

industrial load buses are provided in Fig. 3. A 

significant advantage of the NARX model is that the 

model adapts to short-term changes in load behaviour, 

as the autoregressive coefficients are automatically 

updated based on recent measurements. For longer-term 

changes, e.g. seasonal changes, or changes in user 

consumption patterns due to a tariff change or DER 

installation at a particular bus, the model NNs should be 

re-trained. Underperforming load estimation/forecasting 

models can be identified and re-trained based on 

feedback from the DSSE (see also Results and 

Discussion). The average NN training time for each MV 

node was 1.3 seconds (using MatLab on a two-core, 2.6 

Ghz Intel i3 microprocessor). 

RESULTS AND DISCUSSION 

The closed-loop DSSE described in the previous 

sections is applied to the case study distribution network 

for which detailed recordings are available at MV 

substations and at the end-user level in the LV network. 

The network is a 48-bus, 10kV system with a weakly-

meshed structure, Fig. 4. The network has a peak 

demand of 3.2 MW, which is made up primarily of 

suburban/rural residential customers (77% of total 

demand). There is also significant PV generation 

installed at LV, and district heating load. At most nodes 

in the network, measurements of MW demand only 

were available. Hence, in order to calculate reactive 

powers, aggregate power factors of 0.97 for residential 

loads and 0.95 for industrial/other loads were assumed. 

Performance of Closed-loop DSSE 

Fig. 5 shows the performance of the DSSE, expressed as 

the MAPE of the voltage, MW, and MVAr flows 

throughout the distribution network. Several scenarios 

are tested. The initial conditions at time t = 0 are: input 

measurements of real and reactive power injections with 

standard deviation σ = 5% at each MV node, and a 

 

Figure 4 – MV distribution network case study [5]. 

measurement redundancy factor of 1.03 (slightly over-

determined). The following scenarios A-E were 

simulated and some comments on the results from the 

DSSE are given in each case:  

 Scenario A: Gross measurement error at single bus 

(t = 100). This results in a small error in voltage 

and real power flow. 

 Scenario B: Multiple missing measurements from 

buses 46-48 (t = 200). The system is now under-

determined (redundancy factor 0.97), and DSSE 

replaces the missing inputs with pseudo-

measurements. There is only a minor impact on 

accuracy of estimation of voltages and flows. 

 Scenario C: Complete failure of communication 

system (t = 300). All measurement inputs are 

replaced with load estimates from case (i) MLR. 

The DSSE continues to function, although some 

large errors occur (MAPE ≈ 60%). 

 Scenario D: Complete failure of communication 

system (t = 500). All measurement inputs are 

replaced with load estimates from case (iv) NARX. 

Voltage and power flow estimation errors are 

significantly reduced compared to Scenario C. 

 Scenario E: MV node injections replaced with 

more accurate measurements with σ = 1% from e.g. 

improved LV smart metering (t = 700). 

Short-term Operational Planning 

The load forecasting and robust DSSE can also be 

applied to short-term planning in the distribution 

network. For example, hours/days ahead contingency 

analysis can be carried out to estimate the impacts of 

unscheduled faults. This can provide the network 

operator with early warning of potential voltage or 

thermal line rating excursions, and recommendations for 

corrective actions (e.g. network re-configuration). This 

could also be used for optimal management of DER. 
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Figure 5 – Mean absolute percentage errors for system voltages, real 
and reactive power flows obtained with various DSSE inputs. 

Applying a closed-loop DSSE approach allows for the 

design of operational planning services which can run 

automatically, with minimal intervention from the user. 

The NN load models have the advantage that they can 

be trained at any MV node without a priori knowledge 

of the load structure. These models can then adapt 

according to observed changes/trends in load behaviour. 

This makes the approach in Fig. 1 straightforward to 

apply to a wide range of distribution networks and load 

types. 

Identification of Bad Data and Feedback to Load 

Estimator 

The measurement residual vector r describes the “fit” of 

the measured input data to the DSSE equations (1)-(7). 

Statistical tests, such as the Chi-squared test, are used to 

determine if a given measurement is bad, i.e. a poor 

statistical match to the overall measurement data set and 

system equations. Individual bad data points are 

automatically removed by the DSSE.  

In addition, a record is kept of all DSSE residuals at 

each network MV node. Nodes with frequent 

occurrences of high residual values should be 

investigated to determine if these are caused by 

metering or communication issues, or by incorrect 

values for network parameters and configuration. 

Furthermore, all load forecasts are compared against the 

corresponding recorded real-time values in the post-

processing stage. The estimation/forecast errors at each 

node are used to identify under-performing NN load 

models, which are then retrained as required. The 

standard deviations of the MV node load forecasts    

are also used as feedback to the DSSE. These values are 

used to build the measurement weight matrix (4), 

allowing the DSSE to assign greater importance to load 

estimates which are known to have better accuracy, 

improving the overall performance of the DSSE. 

CONCLUSIONS 

The methodology presented in this paper implements a 

load estimator and a robust DSSE in a closed-loop 

configuration. The provision of high-quality load 

estimates to the DSSE is a difficult problem, due to the 

inherent variability in MV/LV substation-level 

measurements. It was demonstrated that non-linear load 

estimators in this application than linear models for this 

application. The DSSE was tested using data from an 

actual MV distribution network and its robustness to 

measurement noise and errors was demonstrated. It was 

also shown that the approach can be applied to short-

term operational planning in distribution systems. 

Further work will focus on the testing the DSSE on 

various types of distribution system (meshed/radial, 

urban/rural), and on unbalanced MV/LV distribution 

systems. In addition, further research will be carried out 

in order to automate the procedures for post-processing 

of real-time measurement data. This will allow for 

automatic identification of problems in the input data, 

and subsequent re-training of load estimation models.  
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