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ABSTRACT 

In order to assess the effect potential impact of new low-

carbon technologies, such as photovoltaic  (PV) 

installations, electric vehicles (EV) and heat pumps 

(HP) on LV networks it is important to be able quantify 

the likely outputs from these technologies. However the 

installation of monitoring equipment is expensive and 

there may be technical considerations and issues with 

obtaining customer permission which mean that 

monitoring large numbers of PV installations may be 

difficult in practice. This paper proposes a novel 

statistical approach to determine the effect of sample 

size in producing an accurate representation of the 

output of PV installations within South Wales in UK.  

Probability distributions are used represent the 

variability in parameters that directly influence PV 

generation profiles, such as size and orientation, over 

the area of study. The basic idea is then to use Monte-

Carlo simulation techniques to build up representations 

of the distribution of PV outputs by month within the 

study area. The potential biases associated with 

choosing different sample sizes and sampling 

procedures are then assessed.  

 

INTRODUCTION 

There is an increasing interest in low-carbon 
technologies such as micro-PV, electric vehicles (EV) 
and heat pumps (HP) at the low voltage (415V) 
customer side [1]. It needs for greater understanding of 
the potential impact of such techniques on the LV 
network and subsequent changes in LV planning. In 
order to address this need, Western Power Distribution 
(WPD), the distribution network operator responsible 
for energy distribution for Southwest England, South 
Wales and the Midlands in the UK, has initiated a 
project which aims to identify and quantify the potential 
impact of new low-carbon technologies. In an additional 
part of the project, monitoring devices need to be 
deployed for household PVs in order to assess the 
impact of these PV at the substation level. 
There are currently over 3500 registered PV 
installations in South Wales, over 1000 of which are 
associated with substations in the study area. 
Theoretically, monitoring devices could be installed for 
every PV installation within the study area, however 
there are difficulties associated with this including cost, 
technical issues and obtaining customers’ permission. 
This paper focuses on determining the size of the 

sample of PV installations that would be required in 
order to obtain an accurate representation of the 
distribution of PV outputs over a region.  
A number of studies have investigated the relationship 
between PV input factors and PV output. The output is 
influenced by a variety of factors including irradiation, 
azimuth and tilt angle, temperature and system 
efficiency [2]. Traditionally, methods for assessing 
required sample sizes are based on assessing the 
difference between two values which are assumed to 
follow a given probability distribution, often the Normal 
[3]. However, in the case considered here this is 
unlikely to be tenable assumption. Additionally, it is 
also assumed that the parameters of the distributions are 
known which ignores the inherent uncertainty and thus 
underestimates the size of the sample that is required.   
In this paper, we propose a more flexible approach to 
the calculation of sample sizes required to accurately 
represent PV output over an extended area using Monte 
Carlo analysis (or error propagation) to produce 
distributions of output [4]. Within each iteration of the 
Monte-Carlo simulation, samples from each of these 
distributions are used to compile a distribution of PV 
output over the study region. This simulated distribution 
of PV outputs are then treated as ‘real’ in the second 
stage of the process in which the potential effects of 
different sampling strategies are investigated. At this 
second stage, a selection of different ‘samples’ are 
drawn from the distribution of PV outputs obtained 
from the first stage and which are now treated as ‘real’. 
The effects of choosing different sampling sizes in 
terms of obtaining a representative sample are assessed 
in terms of bias both of mean levels and variability.  
The rest of the paper will firstly describe the 
deterministic relationship between a selection of 
important input factors and PV output. Next, the 
rationale for the probability distributions used to 
represent the variability in the input parameters and the 
choice of parameters for these distributions are 
explained. In part IV details of the Monte Carlo method 
used to simulate the distribution of PV outputs are 
presented. Part V contains a statistical analysis of the 
effects of different sample sizes and strategies on the 
estimation of both mean levels and variability. Finally, 
we provide a discussion of the findings of this study 
together with suggestions for future research. 

THE OUTPUT PROFILE OF 

PHOTOVOLTAIC 

The output of a PV is influenced by various factors, 
including irradiation, azimuth, tilt angle, temperature, 
system efficiency and PV material [5]. Mathematically, 
the power of a PV can be by expressed as follows 
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where G0 =1000W/m
2
. G is the solar irradiance on the 

PV module, PSTC is the nominal peak, and effrel is the 
relative module efficiency which is a function of 
irradiance and module temperature.  
The nominal peak power is the power output of the 
module(s) measured at Standard Test Conditions (STC). 
The module efficiency measured at Standard Test 
Conditions is referred to as effnom.  The relationship 
between PSTC and effnom can be expressed as 

nomSTC effAP     

     (2)   
where PSTC is the nominal peak power and A is the panel 
surface area of the PV modules.

                                         

 
The nominal peak power can be written in the following 

form: 

STCSTCSTC IVP     

     (3) 
where VSTC and ISTC are the  voltage and current of the 
PV, respectively under the electric load that produces 
the maximum power at Standard Test Conditions (STC). 
When the values of temperature and irradiance differ 
from STC, the maximum current and voltage become Im 
and Vm. From (3) and (4), the relative efficiency effrel 
can be therefore expressed as [6]: 
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where the coefficients, αi, βγ, c1 and c2 are empirical 
constants. The module temperature has a corresponding 
relationship with the ambient temperature of the form: 

ambNOCTm T
G
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800

)20(   

   (5) 
where Tm is a PV module’s temperature, Tamb is is 
ambient temperature and TNOCT is nominal operating cell 
temperature.  

THE CHOICE OF PROBABILISTIC 

DISTRIBUTIONS TO REPRESENT PV 

INPUT FACTORS 

Predicting the power output of a PV using the formula 
given can be very challenging as some of the input 
factors may vary significantly under different conditions 
or in different regions. Normal distributions have been 
adopted for this purpose in a number of previous studies 
and [7] gave an example of using probability 
distributions in calculating PV cost. However the 
assumption of normality is unlikely to be realistic for all 
the PV input and in this paper we introduce an improved 
method to estimate the output of PVs based on a 
selection of probability for sample size assessments.  

Temperature and Solar Irradiation 

As can be seen from (1), G0 is a constant as discussed 
above. Information on temperature Tm and solar 
irradiance was obtained from The Photovoltaic 
Geographic Information System (PVGIS) of European 
Communities [8]. As the study region, part of South 
Wales, is a relatively small geographically area, it may 
be assumed that temperature and solar irradiance are 
constant at any time point over the study area.  
Previous studies have found that solar irradiation and 
temperature within a small area can be reasonably 
represented by normal distributions [7, 9]. Here, the 
irradiation and temperature for each month are assumed 
to be normally distributed with means and standard 
deviations based on historical data obtained from 
PVGIS [10].  Figure1 shows the distribution for average 
daily irradiation distribution in June. 

 
Fig.1. Normal distribution used to represent the solar irradiation in 

June in South Wales 
 

Azimuth Angle 

It is noted that the irradiance G absorbed by PV 
modules in (1) is not only influenced by the solar 
irradiation but also the tilt angle, azimuth and the 
material of the PV [11]. The optimum azimuth angle in 
the UK is south. For north-south facing houses, most 
customers will install their PVs on south roof in order to 
obtain the highest power output. Although for the 
optimum power output PV panels should be installed at 
this orientation and ,angle  factors such as roof types 
and non-south facing properties,  mean  the range of 
orientation is extended from almost 360 degrees for 
azimuth angle (south=0, west=90, north=180=-180 and 
east=-90) and from 0 to 45 degrees for tilt.  
Based on these factors, the distribution of the azimuth 
angle is assumed to be normally distributed with a mean 
angle of 0 degrees and standard deviation of 60 degree. 
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Fig.2. Normal distribution representing the azimuth angles of PVs in 

South Wales 

 

Tilt Angle 

The optimum tilt angle in the UK is  30-40 degrees [11] 
and the majority of the PVs are put within the range 
[12]. However in the case of flat roof, due to safety 
requirements, some PVs may be installed horizontally. 
In such cases, the solar radiation received may still be 
almost 90% of that at the optimum angle [12]. Previous 
research has shown that the received solar radiation 
starts to fall sharply when the angle is above 50 degree 
and is substantially reduced when above 70 degrees  
[12].  

 
Fig.3. Distribution representing tilt angles of PVs in South Wales  

 

Angles below 30 degrees are more likely to appear than 
those above 40 degrees due to them being more 
efficient. Based on this information, the distribution for 
tilt angles of all PVs in the study region is assumed to 
be a truncated skewed normal 15] with a mean of 35 
degrees, a standard deviation of 15, a skewness 
parameter of 0.7 and with truncation occurring at 0 
degrees seen in Fig.3. 
 

PV Size 

The size of a PV is often represented in terms of its total 
nominal peak power. For example, a 1 Kw-size PV 

indicates a nominal peak power of 1 Kw and a 10 Kw-
size PV has nominal peak power of 10 Kw, therefore 
higher power is associated with larger PV size.  

 

 
Fig.4. Triangular distribution representing sizes of the PVs in South 

Wales 
 

Bases on information supplied from WPD relating to a 
sample of approximately 300 PVs in the study area, a 
suitable distribution for PV sizes is the triangular 
distribution. Within this sample PVs, the maximum size 
is 5.52Kw and minimum size is 0.9Kw with a mode of 
1.85.  Figure 4 shows the corresponding triangular 
distribution used to represent PV sizes of all PVs. 

Other Factors 

There are other factors that are less amenable to being 
assigned a probability distribution due to difficulties in 
obtaining enough information on which to basis a 
sensible choice. Examples include trees shading, PV 
material and inverter failure. In the absence of 
additional information, the effect of such factors is 
represented white noise, in the form of the variance of a 
normal distribution.  

SIMULATION OF THE PV OUTPUT 

PROFILES BY COMBINING THE 

DISTRIBUTIONS OF INPUT FACTORS 

Monthly Profiles of Photovoltaic outputs  

The monthly power output profile is the daily average 
power output of each month over a year. Although the 
daily profile is most suitable for electricity network 
analysis, for simplicity we demonstrate the approach on 
monthly profile due to constraints in the data required to 
determine the required distributions at the higher level 
of temporal resolution. .     
The product Pi for average daily power output of a PV 
in month i with irradiation Gi, efficiency effrel(Gi,Tm)i 
and peak power PSTCi is represented by, 

   (6)

 

where i=1,  … , 12 represents months of the year. 
In order to obtain the distribution of power outputs from 
PVs of the PVs can be calculated by drawing repeated 
samples from the distributions defined for factors that 
feed into the calculations leading to (6), resulting in 
distributions for power outputs.  
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Monte Carlo simulation and correlated inputs 

Using Monte-Carlo simulation techniques samples are 
repeatedly taken from the distributions of the input 
factors used to build up distributions for the power. 
Here we aim to simulate the output profiles to represent 
approximately 1000 PVs within the study area.   
Profiles were simulated for the outputs of 1000 PV 
installations based on the input parameters and their 
associated distributions.  
However, there are a number of factors which may have 
major effects on PVs such as system losses, shading and 
inverter failure. Based on a study of these factors, a 
noise term representing 50 W is incorporated into the 
simulation models, via the standard to represent this 
additional variability. The value of the noise term will 
be used as the standard deviation in a normal 
distribution. Further, in order to investigate the 
uncertainty of the white noise, a series of different 
values of the white noise from 1 W to 100 W is tested.  
Figure 5 shows the resulting estimated daily output 
profiles for the 1000 PVs over a year together with the 
mean over all the profiles.  

 
Fig.5. Daily output profiles of 1000 PVs over a year. The red line 

shows the mean output over all PVs 

 

OBTAINING A REPRESENTATIVE 

SAMPLE 

Programming and simulation 

After the profiles of the 1000 PVs have been simulated, 
this is considered the true population, or ‘real data’. We 
now present a method to assess the efficacy of using 
samples to make inference about the entire population in 
a similar fashion as would be carried out in practice. 
The difference here is that we know the truth, i.e. the 
features of the entire population we are sampling from, 
and so can assess the bias associated with different 
samples. The performance of samples of varying sizes: 
2, 10, 100, 250 and 500, is assessed in terms of biases of 
the sample mean and standard deviation.  
To allow for sampling variability, samples of each size 
are repeated drawn and the bias calculated for each 
sample. This procedure is repeated 1000 times for each 
sample size. Fig.6 shows clearly that as the sample size 
increases, the sample mean approaches to the population 
mean and that the return in increasing sample size is 

greatest when increasing very small samples. There are 
fewer effects when increasing sample size above 100, 
after which the sample means are very close to the true 
population mean.  

 
Fig.6. Mean profiles associated with different size samples with 

additional variation term (white noise) of 50W 

 
The corresponding results when the term representing 
the additional variability associated with factors such as 
system losses, shading and inverter failure is increased 
to 100W can be seen in figure 7.  

 

 
Fig.7. Mean profiles associated with different size samples with 

additional variation term (white noise) of 100W 

Bias of sample mean and standard deviation 

In order to assess the bias associated with samples of 
different sizes, the root mean square error (RMSE) is 
calculated for both means and standard deviations. For 
any given sample size, the RMSE is calculated using the 
mean of the repeated samples and the (known) mean of 
the population for each month. Formally, the bias is 
expressed in the following form: 





n

i

PP
n

Bias smispimean

1

2)(
1

  

   (7) 
where n=12 represents the 12 months, Pspi is the sample 
mean of PVs output in month i and Psmi is the ‘true’ 
mean 
The mean values of bias, over the repeated samples, for 
different sample sizes can be seen in Figs 8. Using an 
additional variability term from 1W to 100W, it can be 
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seen that the bias can be as high as 100W when using a 
sample size of 2, reducing to 50W with a sample size 
increase to 10 and decreasing markedly after that. With 
sample sizes of 250 or greater, the bias is lower than 
8W.  

 

 
Fig.8. Bias (W) of means under different sample sizes with varying 

amounts of additional variability (white noise) terms 

 
As observed in Fig 8, the effect of additional variation is 
more marked with smaller sample sizes and this is again 
seen in the estimation of biases in which biases increase 
markedly as the noise term increases but this effect is 
decreased with large sample sizes.  

CONCLUSIONS 

This paper proposes method for estimating the 
distribution of PV outputs over a region. Relationships 
between in out factors and PV outputs are expanded to 
incorporate both the inherent variability in values of the 
input factors but also additional levels of uncertainty. 
This is performed using Monte-Carlo techniques which 
enable representative distributions of PV outputs to be 
generated over the region of interest. We then used 
these representative distributions to perform a study to 
assess how accurately data from samples of PVs, rather 
than monitoring the entire population, would be in 
assessing output profiles.  
Under the assumptions presented in the paper, it is 
observed that there is a marked relationship between 
accuracy and sample size when dealing with samples of 
less than 100 but that after 100 there is a diminishing 
return in terms of estimating mean and variability. 
Further development of this approach will focus on 
generalizing this method to enhance the applicability:   
i. Networks analysis is usually based on half-hourly 

daily profiles. Future work will apply this 

approach into half-hourly daily profiles.     

ii. At present, the distributions of input factors are 

based on a number of assumptions derived from 

previous studies and the literature. In the future, as 

data is collected from the monitors placed as part 

of the project, these assumption will be tested and 

updated based on real data    
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