
CIRED Workshop  -  Rome, 11-12 June 2014
Paper 0178

Paper No  0178 Page 1 / 5

FORECASTING THE RESPONSES OF MARKET BASED CONTROL OF RESIDENTIAL
ELECTRICAL HEATING LOADS

Pekka KOPONEN Pekka TAKKI
VTT Technical Research Centre of Finland – Finland Helsingin Energia - Finland

Pekka.Koponen@vtt.fi Pekka.Takki@helen.fi

ABSTRACT
The value of demand responses depends much on their
predictability. In Helsinki dynamic smart metering based
dynamic demand response can control about 35 MW of
residential full storage heating. A partly physically based
model for forecasting this aggregated load and its
responses to control signals and ambient air temperature is
being developed. Also interval measured consumption is
used as model input. The initial results show that the
control response model developed improves the forecasting
accuracy very much. This research and its initial results
are reported in this paper.

INTRODUCTION
Hourly interval metered electricity consumption of
practically every consumer must be collected for the
settlement in Finland starting from the beginning of the
year 2014. The interval data enables improving the
accuracy of load models and forecasts. The interval
settlement also makes it possible to connect the small
customers' demand response to the electricity market. Thus
it is becoming necessary to accurately short-term forecast
the aggregated control responses, too. Load forecasting
methods are reviewed in [1] except physically based load
response models that are initially reviewed in [2]. There are
also more recent papers, such as [3].

The subject addressed is short term forecasting the loads
and responses of customers that have electrical heating and
are subject to market based dynamic load control. Helen
Electricity Network has implemented dynamic smart
metering based load control functionality for its time of use
customers [4]. The electricity retailers can control the loads
based on the electricity market prices and the balancing
situation. Also the network operator will be able to control
the  loads  as  soon as  a  non-discriminatory  and fair  scheme
for compensations for the retailers has been defined and
agreed on. Accurate forecasting of loads and their responses
helps the retailers to reduce their power purchase and
balancing costs, and the network operator to better avoid
overloading of the network. In this contribution the focus is
on forecasting before the day ahead market gate closure the
load behaviour for the following 38 hours. The same
forecasting approach may be applied again inside the
intraday market context. Accurately forecasting the heating
demand is needed for defining load control schedules that
minimize the electricity costs and maintain the customer
comfort.

Now about 1500 customers with about 35 MW total power
are connected to the dynamic load control system in
Helsinki. Since June 2012 dynamic market based load

control has been applied to nearly 800 customers and
we develop and identify forecasting models using their
hourly interval data, weather data and weather forecast
of the first year. The model development is now being
completed and the data of the second winter (June 2013-
May 2014) will be used for model verification and
comparison. Thus all the results reported here are only
initial, because they are based on identification data that
covers June 2012 to May 2013.

This paper describes the forecasting methods and the
performance indices applied. It will also show the
results of the verification and comparisons of forecasted
and actual load responses. The method has two main
steps that are described separately.  These steps are 1)
forecasting the heat demand for the next night and 2)
forecasting the responses to the control signals so that
the forecasted night heat energy demand is met exactly.
Also the needs and requirements for load and response
forecasting will be discussed.

OVERVIEW OF THE RESPONSE
FORECASTING METHOD
The main structure of the load forecasting algorithm
developed is shown in Fig. 1. First the daily demand for
both heating energy and other energy are forecast and
based on them and the control signal the hourly powers
are forecast. Inputs include weather measurement and
forecasts and the load control signal. Also time is used
as an input for removing remaining weekly rhythms and
day length dependencies.

Fig. 1. Simplified overview of the load response
forecasting approach
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FORECASTING HEATING ENERGY DEMAND

Method
The energy demand forecasting model uses past weather
data, weather forecast, day length, and weekday as inputs. It
includes simple linear dynamics and some nonlinear
elements. Special days and the transitions between standard
time and summer time are not yet included in the model.

A simplified version of the applied method was developed
and analysed in [5]. Now identification data covers a wider
ambient air temperature (outdoor temperature) range where
polynomial fit is more appropriate than the original linear
fit. Adding mild low pass filtering of the input also
improved the fit. The inputs of the model are the measured
and forecasted ambient air temperature. The temperature
forecast is used where the measurement is not yet available.
The output is the heating energy demand of the night time.
The method comprises a polynomial with input saturation
limits, lag and a first order low pass filter. The model also
includes a filter for removing constant or slowly varying
bias. All of those parameters were together fitted so that the
variance between the model output and measured heating
energy demand were minimised. After that the weekly
rhythm and a day length dependent component were also
identified from the residual and added to the model. That
slightly improved the fit, and verification analysis is needed
to know, if those model components are adequately useful
to outweigh the added complexity.

For forecasting the daytime energy demand, and the daily
minimum and maximum hourly powers from the ambient
air temperature, we developed similar but even less
complex models.

In earlier studies, such as [6], we found out that using
ambient air temperature forecast improves the forecasting
performance substantially. Short term temperature forecasts
are available without additional costs. Thus in this paper we
always use ambient air temperature forecasts as inputs.

Performance indices
Then the following performance indices were used:
   Root Mean Square Error (RMSE) =  root(mean(et

2))
   Std. (Standard Deviation) = root(mean(et-mean(et))2)
   Mean Absolute Error (MAE) = mean (|et|)
   Range = max(et)-min(et)
Here et is the forecasting error at time t. For more
information on measures of forecast accuracy read [7]. The
performance indices mentioned above do not take into
account the monetary cost of the errors. Thus also
weighting the errors with electricity spot-price was
implemented but the results are left for later publishing. For
the same reason percentage errors that weight more the
errors during low loads are not useful performance indices
here.

Results
Selected indices of night energy forecasting
performance are shown in Table 1. The absolute error is
given as divided by the number of houses. Also the
indices normalised to the yearly mean night energy,
which is 64.8 kWh/house, are given. The performance is
practically the same, when separately modelled group
forecasts are summed (G1+G2 as clusters) or when the
combined croup is modelled and forecast as such
(G1+G2 combined.).

Table 1. Performance of night energy demand
forecasting.

The best night energy forecast is compared with the
measurement in Fig. 2. For scalability the energy is
averaged  over  the  694  houses  that  belong  to  the  two
separately forecasted groups. The forecast is the sum of
the forecasts of two groups. These results give

Fig. 2. Comparison of energy demand of the next night
forecasted at 10 a.m. with the measured energy demand.

a) Absolute error divided by the number of houses (kWh)

Group 1 Group 2
G1 + G2  as

clusters
G1 + G2

combined
RMSE 5.583 5.544 3.719 3.722
Std. 4.129 4.445 3.713 3.716
MAE 4.305 4.344 2.760 2.758
Range 30.476 25.855 26.291 26.366
b) Error normalised by the yearly mean night energy

Group 1 Group 2
G1 + G2  as

clusters
G1 + G2

combined
RMSE 0.0862 0.0856 0.0574 0.0575
Std. 0.0637 0.0686 0.0573 0.0574
MAE 0.0665 0.0671 0.0426 0.0426
Range 0.4705 0.3991 0.4059 0.4070
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confidence that forecasting of the heating demand can be
improved much compared to the method that is now used
online.

The forecasting error time series for Fig. 2 is shown in Fig.
3. Its standard deviation (Std.) is 3.71 kWh. One sigma
confidence interval of the Std. is about 0.14   kWh, because
the identification data comprises 365 days and the errors
can be assumed to be nearly independent with normal
distribution.

Fig. 3. Night energy forecasting error per house for the sum
of separate group forecasts (G1+G2 as clusters).

The control signals for the two groups are different, mainly
because the houses in group 2 need a longer heating time.
Thus forecasting of the control responses requires that the
heat demands of the groups are modelled separately. Table
1 shows that this approach does not compromise the
accuracy of heat demand forecasting.

FORECASTING CONTROL RESPONSES

Method
Sometimes rather detailed physically based response
models are applied so that the responses of a representative
large number of houses are simulated [8]. This can be too
time-consuming for real time operation such as planning
and optimizing the use of controllable resources for the
day-ahead and intra-day market. If the set of situations to be
considered is limited, the responses can be calculated in
advance.  When the control actions and responses depend
strongly both on the variations of spot prices and ambient
weather, such an approach is not practical for online use.  It
can also be expected that both the prediction performance
and the model updating suffer from the big number of
parameters that need to be identified before the simulations.
Such  a  top  down  simulation  approach  is  more  useful  for
other types of uses such as studies for testing and
verification of the online forecasting and control
algorithms. Here we focus on simple models where tuning

is easy to update or even to make adaptable in response
to the changes in the heating systems and buildings.

The applied dynamic control response model models the
aggregated load of each controlled group using a simple
physically based model structure that is fitted to the
measured  data.  So  the  model  does  not  describe  any
individual house. The structure is based on a typical full
storage heated house but the dynamics are modified
slightly so that the model better reflects the smoothness
of the behaviour of a big group of houses. The model
parameters were fitted so that the error between the
model output and the measured hourly powers were
minimised.

The input signals to the model are:
- the predicted night energy demand,
- the maximum and minimum power predicted based on
the measured and forecast ambient air temperature
- the control signal.
The output of the model is the hourly power time series
up to the forecasting time horizon. That covers the
following night tariff period and the day tariff time
period after that. Here the tariff periods are applied both
for the Time-Of-Use network tariff and for most
customers also the contractual limits that define the
admissible heating period within which the dynamic
load control is allowed to control loads on.

Results
The heating load is the biggest load component and it is
controlled dynamically. Thus all load forecasting
models that do not model the control responses are
doomed to fail. This is demonstrated in Table 2.

Table 2. Load response model improves the forecasting
performance very much

There one model has a dynamic control response model
but the other one does not. Otherwise both models have

a) Absolute error divided by the number of houses (kW)
no control response
model

with control response
model

RMSE 3.1701 0.5303
Std. 3.1701 0.4687
MAE 1.5238 0.3896
Range 35.2233 3.7385
b) Error normalised with the yearly mean power

no control response
model

with control response
model

RMSE 0.9880 0.1653
Std. 0.9880 0.1461
MAE 0.4749 0.1214
Range 10.9774 1.1651
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similar model structures and similar tuning procedures.
Both models have the same ambient air temperature
dependency model and both models have the same
performance in predicting night time energies and daytime
energies. When the Std. is 0.4687 kW the estimated
confidence interval for the Std. is about 3.5W, because
there are 8760 hours in the identification data.
Fig. 4 and Fig. 5 show examples of a comparison between
the forecast and the measurement. They are the sum of two
separately controlled groups. The night time starts at the
vertical gridlines (9 p.m.) and the time when heating turns
loads on and off varies according to the market situation.

Fig.  4.  A  sample  of  a  comparison  of  hourly  power
forecasted at 10 a.m. with the measured energy demand.

Fig. 5. Another sample of a comparison of hourly power
forecasted at 10 a.m. with the measured energy demand.

The hourly  power  forecasting  error  is  shown in  Fig.  6.  Its
Std. is 0.315 MW.

The focus was on forecasting the control responses. Some
possibilities to further improve forecasting of the daily
energy demands and the daytime hourly powers are
compared in [9] for a partial storage heating customer

segment of a rural DSO.

Fig. 6. Hourly power forecasting error

DISCUSSION

Needs and requirements for control response
forecasting
The power flows and balances in modern power systems
are increasingly dynamic due to changes in the
generation mix towards intermittent renewables, heat
load following CHP, and distributed generation.
Strengthening the networks to accommodate these
variations is expensive and needs space. Large scale
electricity storages can buffer the variations but are still
rather expensive and cause energy losses. Smart
network automation enables operation closer to the
network capacity constraints but depends on dynamic
demand side responses and the ability to forecast these
responses accurately.

Load control response models are needed for
forecasting and optimising the control responses. When
market based control or system based control is applied
to  very  many  new  controllable  loads,  the  risk  of
exceeding network capacity constraints increases. With
accurate load response forecasts it is possible to detect
such problematic situations in time and correct the
control signals accordingly before sending them to
execution. During recovery of faults situations it is
useful to forecast and control the load pick up. For
market based control, short term forecasts are needed
with various time horizons such as before day-ahead
market gate closure, after day-ahead market clearing,
and during planning of intra-day market operations.
Load control actions combined with poor control
response forecasts lead to large and costly balancing
errors that cancel much of the benefits of load control.
Accurate response forecasts are necessary also when
load control is used for provision of system reserves or
management of network capacity constraints.
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For the optimisation of the responses, nonlinear constrained
dynamic optimisation explained in [10] can be used.
However, it was observed that for full storage heating
simply selecting the hours with the lowest price as
explained in [4] gives results that are close to the optimum
[11]. Thus the very simple method is preferred. For partial
storage heating the dynamic nonlinear optimisation clearly
outperforms heuristics, even when the heuristics are
designed and tuned with the help of the optimisation
method [10, 11].

The forecasting algorithm must be suitable for online use,
because the responses depend on ambient air temperature
and its variations.

Plans for the future development
Because the same identification data was used for model
identification and performance analysis, the reliability of
the results is somewhat questionable. In our earlier short
term load forecasting studies the verification data has given
almost as good values for the performance indices as
identification data. When we have collected enough
verification data by June 2014, we can complete the
forecasting performance analysis.

The  analysis  and  tuning  of  the  methods  continues.  A
preliminary plan is to apply neural networks and hybrid
models to response forecasting and compare the
performance  in  the  case  of  dynamic  load  control.   In  our
recent comparison of short term load forecasting methods
[9], a neural network model to some extent outperformed a
partly physically based model that included a Kalman-filter.
There the loads were partially storing electrical heating
loads and dynamic load control was not applied. It is not
yet completely clear how neural network models can be
made to predict the responses of dynamic load control more
accurately than the partly physically based approach.

In this paper the focus was on forecasting the control
responses of the heating loads. Thus the possible impacts of
wind speed and solar radiation on the heat demand was left
to future studies. Also the forecasting of the daytime hourly
household  loads  was  kept  simple  and we have  some ideas
on how it could be rather easily improved from that shown
low in Figures 4 and 5.

CONCLUSION
A partly physically based model for the aggregated load
was developed and its parameters were fitted to the
identification data. When dynamic load controls are applied
the inclusion of a control response model improved the
forecasting performance very much. We expect that it is
possible to develop even more accurate response models,
for example using neural networks. There are also aspects
other than accuracy that are relevant when selecting the
model, but these were not considered in this study.
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