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ABSTRACT 

Probabilistic power flow calculation techniques are used in 

order to assess uncertainties due to current or future states 

of distribution grids (DG). These uncertainties are the 

stochastic behaviour of distributed energy resources (DER) 

and their hardly predictable number, installed capacity and 

location. This paper presents a consistent and comprising 

modelling of DER in form of parameterized probability 

density functions (PDF) and a convolution method, which 

takes into account correlations between DER and 

minimizes linearization errors by using a multilinearization 

approach. 

INTRODUCTION 

Convolution approaches in probabilistic power flow 

calculation have been discussed in literature [1-6]. The 

central idea is to linearize the power flow equations at one 

(“linearization”) or several (“multilinearization”, [1-2]) 

operating points, treat the input variables as probability 

density functions and  determine the output probability 

density functions by a weighted convolution process. This 

paper proposes a novel way of probabilistic modelling of 

DER considering domestic households, electric vehicles 

and photovoltaic (PV) units and shows the achieved results 

for example cases, where the influence of correlations 

between input variables and errors due to linearization are 

discussed. 

MODELLING OF DER 

Households (HH) 

To analyse the power demand of households, smart meter 

data of 39 households from the years 2010 to 2012 has been 

analysed, which represent the 15 minute mean power values 

of domestic households. The power values were normalized 

to the annual energy demand (AED in MWh) of each 

household (       and separated by means of season 

(winter, transition and summer), daytype (workday, 

Saturday, Sunday) and the 15-minutes timestep of the day 

(TOD) according to Table 1. 

Daytypes (DT) 
season 

Win Tra Sum 

Type 

of day 

Sun 1 2 3 

Sat 4 5 6 

Wor 7 8 9 

Table 1: Enumeration of daytypes 

These normalised power values for each DT-TOD 

combination was estimated with a maximum 

likelihood estimate for a lognormal PDF, which 

showed to be the best estimate for the distribution 

of normalised smart meter data and has the form: 

         
 

        √  
 
               

    
   

where     and     are mean and standard 

deviation of this lognormal PDF and functions of 

DT and TOD as shown in Figure 1.  

 

 
Figure 1:  

  
 (top) and     (bottom) as functions of 

DT and TOD 

    is between 0.5 and 0.7 during the evening and 

night and between 0.7 and 0.85 during the day, 

almost independent of the daytype.     almost has 

the form of standard load profiles and is between -

3 and -1.5, where the peak occurs in winter 

evenings.  

By de-normalization with a certain AED one can 
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get the lognormal PDFs as a function of TD, TOD and 

AED. Changing the TD from 1 to 2 shifts the lognormal 

PDF to the left, changing the TOD from 60 to 80 or the 

AED from 1 to 3 MWh shifts the lognormal PDF to the 

right (Figure 2).  

In principle the modelling for reactive power can be done 

accordingly. In the following, a constant power factor of 

0.95 is assumed for the reactive power of HH. 

 
Figure 2: Variation of the lognormal PDF while changing the 

values of TD, TOD and AED 

Photovoltaics (PV) 

The behaviour of DER can be described by means of two 

distributions: On the one hand the peak power distribution 

(PPD) describes the frequency of occurrence of installed 

power capacities of DER. On the other hand the normalized 

power performance (NPP) describes the probability that a 

PV unit provides a certain normalized power. The NPP is a 

time dependent function and comprises all the interior 

characteristics of the DER. The combination of PPD and 

NPP describes all the information of a DER needed for a 

convolution process. 

Figure 3 shows the PPD of small PV units in Germany 

according to [7]. Frequent installed peak powers are around 

5 kW and 30 kW. The approximated curve was derived by 

modelling the PPD as a superposition of two lognormal 

functions with peaks at 5 and 30 kW similar to the 

modelling of households. 

 
Figure 3: PPD of small PV units in Germany 

Figure 4Figure 4 (top) shows the NPP of PV units in the 

course of a day during summer. The values are 

based on the direct and indirect solar radiation in 

TRY region 6 [8] and a PV model which considers 

typical orientation, ambient temperatures and 

typical module and inverter characteristics. It can 

be seen that the peak power of 1 p.u. is only fed in 

during noon with a low probability. 

 
Figure 4: NPP of PV units during summer in TRY 

Region 6 (top) and Normalized charging power while 

charging for EV with CP=1 and CI=1 (bottom) 

Electric vehicles (EV) 

In [10-12] the charging processes of electric 

vehicles have been described with the parameters 

charging power (CP) and charging infrastructure 

(CI) according to Table 2. The probability that an 

electric vehicle (EV) is charging for all the CP-CI-

combinations can be seen in Figure 5 for all TOD 

of a workday. With higher CP the charging 

probability of an EV decreases. At most CI 

scenarios the charging probability reaches its 

maximum in the evening. 

Due to battery specific characteristics an EV does 

not charge with the maximum CP during the 

charging process. For CP=1 and CI = 1 Figure 4 

(bottom) shows the NPP of an EV. In the morning 

the battery of the EVs is almost completely 

charged (and charging with small power) while 

during the day and in the evening it is emptier (and 

charging with higher power). The behaviour of the 

charging power cannot be expressed with 

lognormal functions like households, but requires 

more complex density functions, which cannot be 

expressed in simple analytical functions anymore. 

It depends on the capacity and charging 
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characteristics of the batteries and the driving behaviour 

and routes of the users. 
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1 3.7 kW (AC, 1 phase, 16 A) 

2 11 kW (AC, 3 phase, 16 A) 

3 55 kW (DC, fast charge) 

4 70% of (1), 20% of (2), 10% of (3). 
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 1 At home 

2 At home and at work 

3 Everywhere 

4 At home and at work (outside the grid) 

Table 2: Considered charging parameters 

 
Figure 5: Probability of charging for CP-CI-combinations 

CONVOLUTION METHOD 

The vector of complex powers  ⃗ at the buses of a power 

system depend on the complex bus voltages  ⃗⃗ and the well-

known complex admittance matrix  : 

 ⃗ ( ⃗⃗ )   ⃗⃗  ⃗    ⃗⃗ (   ⃗⃗ )
 
 

This set of nonlinear equations can be linearized at an 

operating point (OP) resulting in the complex Jacoby 

matrix   and the sensitivity matrices   and  : 

  
  ⃗  ⃗⃗ 

  ⃗⃗
|

 ⃗⃗⃗  ⃗⃗⃗  

     

  
  ⃗    ⃗ 

  ⃗
|

 ⃗  ⃗  
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  ⃗⃗
|

 ⃗⃗⃗  ⃗⃗⃗  

    

The voltages  ⃗⃗ and power flows  ⃗   (from bus   to  ) are a 

simple addition of the respective values in the operating 

point and the multiplication of the sensitivity matrices with 

the deviations of input powers  ⃗ from the operating point: 

 ⃗⃗   ⃗⃗     ( ⃗   ⃗  ) 

 ⃗    ⃗        ( ⃗   ⃗  ) 

When the input powers  ⃗ are regarded as probability 

density functions, their multiplication with the sensitivity 

matrices become a convolution process with the parameters 

of the sensitivity matrices as weighting factors. 

Multilinearization 

The linearization error increases for input powers 

 ⃗ which are far from the operating point  ⃗  . By 

choosing several operating points     one can 

minimize the linearization error especially at the 

tails of a distribution by choosing several 

linearization points [1-2]: 

 ⃗          ⃗   (        )         ⃗    

 ⃗          ⃗   (        )         ⃗    

One operating point is always set in the expected 

value of the input variables (                ) 

whereas two operating points can bet set to 

                     . 

Correlations of input variables 

Convolution operations are only applicable to 

uncorrelated input variables. For distribution grids 

PV units can be regarded as strongly correlated 

since they expect almost identical solar radiation. 

In the considered method input powers of PV units 

are set to separate busses. Prior to the convolution 

operation of the input variables of the entire 

distribution grid, these busses can be pooled with a 

correlation of one [3-4]. The pool of PV units can 

be regarded as uncorrelated with the rest of the 

distribution grid and the convolution process can 

be performed as before. 

Test cases 

For an analysis of the proposed convolution 

method the 8 bus test grid with 3 households in 

Figure 6 with the parameters listed in Table 3 has 

been used. In the following additional loads and 

generators are added to the grid according to Table 

4 with a penetration rate of 50%. This means that 

the probability that a household has a PV unit or 

an EV is 50%. 

 
Figure 6: Considered test grid 

Grid R X 

Branch 1              

Branch 2/4/6              

Branch 3/5/7            

Table 3: Test grid parameters 

Input power 

types 
AED  Peak power  

Penetration 

Rate 

HH 5 MWh - - 

PV - 10 kW 50 % 

EV - 11 kW 50 % 

Table 4: Considered loads and generators 
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RESULTS 

In this section the test cases according to Table 5 are 

discussed for a TOD of 60 and the summer case (see 

section “MODELLING OF DER”) and have been 

implemented in MATLAB using [9]. 
Test 

case 

Considered 

Power units 
Regarded output correlations 

1 HH Voltage @ bus 8 No 

2 HH+PV Voltage @ bus 8 No 

3 HH+PV+EV Voltage @ bus 8 No 

4 HH+PV+EV Voltage @ bus 111 Yes 

5 HH+PV+EV Power @ branch 2 Yes 

Table 5: Considered test cases 

 

 
Figure 7: Results of test cases 1 (top) and 2 (bottom) 

Figure 7 (top) shows the results according to test case 1. 

Next to the legend are given the 5%-Quantile, mean value 

and 95%-quantile of the resulting voltage probability 

density function. The distribution of the linearized (LN) and 

multilinearized (ML) voltages are almost identical with the 

results of the reference method (Monte Carlo (MC) 

simulation with 10.000 repetitions) and so are the mean 

values and defined quantiles. With PV units (test case 2) 

especially the mean value and 95%-quantile are increased 

significantly (see Figure 7 bottom). 

With additional EV (test case 3) especially the 5%-quantile 

of the voltage distribution decreases to 0.975 p.u., whereas 

                                                           
1
Note that the correlations between the PV units require 3 

additional busses, so that bus 8 becomes number 11 in this 

test case. 

the 95%-Quantil decreases only slightly (see 

Figure 8 top). With a correlation of 1 between the 

PV units (test case 4) the probability of occurrence 

at the tails of the distribution increases whereas it 

decreases around the mean value of the 

distribution (see Figure 8 (middle)). 

 

 

 
Figure 8: Results of test cases 3 (top), 4 (middle) and 

5 (bottom) 

Figure 8 (bottom) shows the apparent power of 

branch 2 according to test case 5. The linearized 

solution underestimates the probability of the 

distribution tails, where the result is falsified by 

the linearization error. Mean value and 95%-

quantile are much better fitted with the 

multilinearized solution, which estimates the 95%-

quantile to 13.2 kVAr (MC result is 13.6 kVAr). 

The main advantages of the developed convolution 
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methods with respect to conventional Monte Carlo methods 

are: 

 Reduction of calculation time by factor 8 for cases with 

low penetration rates and when only a few parameters 

of distribution grids are relevant 

 Reduction of random access memory usage by 

minimum factor 40 

 Analytical conceivability of input and output 

distributions. 

Combined, these three advantages can significantly reduce 

the complexity, calculation time and random access 

memory requirements of studies like [13] significantly. 

OUTLOOK 

The proposed method has been expanded with the 

description of heat pump units and combined heat and 

power units in a probabilistic way, which could not be 

presented here. 

Since the proposed method is implemented in MATLAB, 

probability density functions can internally only be 

modelled as discrete density functions. The resulting 

discretization and scaling errors and the (multi-) 

linearization errors still have to be investigated with 

conventional Monte Carlo simulations for each test case. In 

the future methods have to be developed, which clarify ex 

ante the necessary discretization of the input factors and the 

number of operating points in order to guarantee a certain 

maximum error with regard to bus voltages and power 

flows. This is topic to current research activities. 
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