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ABSTRACT 

The analysis of big data volumes, produced by energy 

distributors and concerning the operation of the grid, 

requires several different techniques, particularly if one 

would like to use such large amount of information in 

possible grid failure assessment and even prevention. A 

preliminary data volumes reduction is strongly needed: 

currently grid data need huge storage and processing 

resources for long-term analysis. This paper presents a 

data aggregation statistical framework allowing to 

compact grid data sets in order to enable further 

semantic-based decision support (grounded on logic-

oriented reasoning technologies) and devoted to try to 

predict failures, to suggest targeted maintenance and to 

possibly optimize grid assets. 

1. INTRODUCTION AND BACKGROUND 

Energy distributors continuously collect telemetry of 

several operational parameters of the grid in normal 

working conditions. Furthermore, in case of 

interruptions, data about the event are gathered in 

inspections executed during repair. Hence, large data 

amounts are produced every day with associated storage 

and management costs whose relevance convinces in 

more and more maximizing their value exploiting novel 

analysis methods able to suggest preventive 

maintenance and to possibly optimize grid assets. 

Nevertheless, each possible information mining is 

restrained by limits in the various steps of data life 

cycle: (i) manual data collection procedures may lack 

completeness and accuracy; (ii) storage may not adopt 

state-of-the-art technologies and best practices to reduce 

data inconsistency as much as possible; (iii) knowledge 

discovery requires specialized approaches and trained 

professionals. As the pioneering experience on the New 

York City grid revealed [1], knowledge discovery from 

grid distribution data has many challenges: 

 the state of the grid at the time of past failures is 

needed to train the predictive system, but taking 

accurate snapshots of past states is difficult due to 

variations in the database and/or the physical 

components; 

 the grid infrastructure contains a large number of 

components, belonging to several types and varying 

in manufacturer, type, age; hence significant 

features must be computed by means of statistics; 

 dynamic data –both grid-related (e.g., sampled 

voltage and current values) and contextual (e.g., 

weather, time of day)– must be aggregated over 

time, but acquisition rates vary significantly 

according to data type; time windows must be 

chosen carefully, possibly exploiting inherent 

system periodicity; 

 grid components are susceptible to several types of 

failures, but available data is imbalanced and for 

many classes the training samples may be too 

scarce to extract regularities with robust 

generalization properties. 

For the above reasons, the early data cleaning and 

aggregation steps are the most critical stages of the 

whole knowledge discovery process and the ones where 

close collaboration among analysts and domain experts 

is strongly needed. Data aggregation and cleaning helps 

(i) reduce data volumes in order to decrease storage 

capacity costs, (ii) build event features and labels for the 

subsequent classification and inference steps [1].  

Data preprocessing may require several rounds of 

information refinement, and the final result may not 

even be satisfactory from a prediction effectiveness 

standpoint. Nevertheless, acknowledging issues in data 

gathering and storage, such an activity is yet relevant for 

the distributor, as it allows improving internal 

information management processes. This paper reports 

on an ongoing collaboration, supported by the funded 

national project RES NOVAE (PONREC 2007-2013), 

between Enel Distribuzione S.p.A. Distributor System 

Operator (DSO) and the Information Systems laboratory 

of Politecnico di Bari, aimed at defining a knowledge 

discovery framework that could allow to predict failures 

and outages in the grid. Such an approach aims to 

exploit novel and not evident correlations between grid 

information data already available from the DSO side. 

The proposed framework is being developed using a 

dynamic, semantic-based and multidimensional 

approach to characterize events and perform statistical 

and logical inferences, in order to derive implicit 

failures information and identify the grid components 

most prone to malfunction. The final goal is to allow 

distributors to switch from a reactive to a proactive grid 

maintenance approach, pursuing resource allocation 

rationalization and cost savings. 

The remainder of the paper is organized as follows. In 

Section 2 the proposed knowledge discovery framework 
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is outlined. Section 3 describes a case study and 

provides early experimental results. Conclusion and 

future work close the paper. 

2. PROPOSED FRAMEWORK 

A semantic-based data mining approach has been 

adopted for the dynamic analysis of some Low- and 

Medium-Voltage (LV, MV) sections of the Italian grid. 

The infrastructure portions have been selected by taking 

into account the presence of a considerable number of 

elements useful to characterize a generic distribution 

network. A Java-based prototype tool has been so 

developed for information aggregation, processing, 

analysis and visualization. It allows distributor’s grid 

operators to monitor data series and gain insight into 

conditions leading to failures. Grid numerical data are 

aggregated and analyzed to infer further knowledge by 

means of Machine Learning (ML) techniques. Design 

and evaluation of the proposed approach is being 

conducted on a dataset provided by Enel Distribuzione, 

consisting of 27 months of observations for 126 MV 

lines (3402 total tables). Have been also provided data 

about failures happened in 29 months (during 2011, 

2012 up to May 2013; 27 of them are the same of the 

MV lines observations). The analyzed dataset comprises 

2438 interruptions on LV lines and 659 on MV ones, 

most of them are transient. 

Figure 1 sketches the general activity diagram of the 

proposed framework. At the first stage data related to 

current variations on MV lines have been aggregated to 

reduce the amount of raw observations by means of: (i) 

statistical indexes; (ii) extension of the sampling period; 

(iii) aggregation of similar observations.  

 
 
Figure 1. Activity diagram of the proposed framework 

 

Absolute and relative indexes of position and dispersion 

(average, standard deviation, relative standard deviation, 

relative delta between values) have been computed 

exploiting a sliding window of 30 minutes (default 

period is 10 minutes). In this way, sudden changes in 

grid behavior (see for example current variations in blue 

circles in Figure 2) become particularly evident. 

Moreover, similar data (i.e., data with same average and 

statistical indexes) are aggregated to further reduce the 

amount of needed space (yellow box in Figure 2). The 

aggregated data will replace redundant values in each of 

3402 tables so that compacted files could be exploited 

in the long-term processing devoted to extract failure 

prediction models. The proposed tool includes a 

prognostic module able to possibly forecast five basic 

grid failures (structural failure, mechanical failure, 

breakage, water infiltration, generic failure). It starts 

from data about:  

 structure of MV lines, related to composition of a 

power line in terms of constitutive properties such 

as length, nature and covering materials, number of 

connected LV and MV clients;  

 contextual parameters, e.g. date, time and weather 

conditions referred to past observed events 

happened on the power grid;  

 current variations in four different observation 

periods (one hour, one day, one week, one month) 

before the happened failure. Also in this case, by 

means of statistical analyses, 11 absolute and 

relative indexes are extracted for each period, as 

reported in Table I.  

 
 
Figure 2. Data analysis tool – Visualization of current trend for a 

single MV line 

 

# Feature Description 

1 Average 

2 
Absolute variance (on average) between two 

consecutive value 

3 
Relative variance (on average) between two 

consecutive value 

4 Absolute Max value 

5 Relative Max value (with respect to the average) 

6 Absolute Min value 

7 Relative Min value (with respect to the average) 

8 Standard Deviation 

9 Relative Standard Deviation 

10 Num. of values out of IQR 

11 Num. of values out of IQR / Total num. of values 
 

Table I. Statistical indexes used to characterize current variations 

 

All the above parameters are exploited to learn 

associative rules and build a decision tree classifier to 

detect possible grid. The classifier has been 

implemented using WEKA machine learning toolkit [2] 

and requires data in ARFF (Attribute Relationship File 

Format) as input. DSO data (usually stored as comma-

separated values) was converted to ARFF by means of a 
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simple GUI (shown in Figure 3) enabling operators to 

export the features of interest from the reference dataset. 

 
 
Figure 3. ARFF conversion tool – Panel for attributes selection and 

conversion 

 

Different classification algorithms could be used for the 

prediction model: J48 (a Java implementation of C4.5 

decision tree [3]); Random tree [4]; Best-First decision 

tree [5]; Functional Tree [6]. The prognostic process 

allows to select the most useful one (with related 

parameters) and then to identify the training and 

validation data (see Figure 4). Validation is related to 

the failures collected during a period subsequent to the 

one used as training. 

 
 

Figure 4. Data Mining tool – Visualization of classification results 

 

To prove the accuracy of the classifier, it is also 

possible to start a 10-fold cross-validation. In this case, 

the classifier is used to predict failures on the same year. 

The reference dataset is divided in ten pieces, nine of 

them are used for training whereas the last set is used 

for testing. The whole process is repeated ten times, 

using a different segment for testing each time and 

finally the average in terms of accuracy of the ten 

results is given. 

As reported in Figure 4, for each classification process, 

the tool returns the following results: (i) accuracy of the 

prediction model; (ii) confusion matrix; (iii) tree-based 

prediction model in textual or graphical form. Finally, 

through the panel in Figure 5, it is also possible to see 

the list of classified instances with the probability of the 

predicted value. In this way, operators can filter the 

output to highlight prediction for specific MV lines.  

 
 

Figure 5. Data Mining tool – Visualization of classified instances 
 

Note that the obtained prediction model outputs data in 

terms of labeled features. Hence, it is difficult to 

understand by users without experience in data mining. 

To overcome this limit, an ontology-based approach for 

a semantic characterization of decision tree model rules 

has been proposed. Each failure prediction rule has been 

annotated in a logic-based formalism. Each condition 

composing a rule was described through a machine-

understandable and user-friendly conjunct referred to a 

domain ontology developed for the power grid domain 

and not reported here for the sake of brevity. This will 

enable a multi-dimensional and semantic-based 

characterization of relevant grid parameters and 

conditions for decision support to grid management. 

Such annotations could be further exploited in different 

knowledge-based applications as in general-purpose 

Decision Support Systems (DSSs), where a semantic-

based approach allows to perform implicit deductions 

about events also in case of real-world non-exact 

matching situations [7]. 

3. CASE STUDY 

In order to clarify the proposed approach and show its 

benefits, a case study about failure prediction on MV 

lines is reported hereafter. The following real working 

scenario is considered as an example. Operators of an 

electricity distribution company need to analyze grid 

data to prevent possible failures on MV lines. They 

would like to identify the most probable causes and 

conditions of grid malfunctioning in order to plan 

preventive maintenance aiming to reduce grid outages 

and improve the quality of service. 

The operator selects the features of interest used as 

input along with the reference years used as training set 

and test set. In the proposed example the first nine 

months of 2012 were used to predict grid failures in the 

following eight months. The mining tool extracts the 

data from the whole database, also rebuilding the 

aggregated current values if needed. Hence, one of the 

four decision tree algorithm cited in Section 2 is 

applied. In particular a binary and unpruned J48 
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classifier is selected. In order to reduce the time needed 

to train the algorithm and create the reference model, 

the early 55 input features of grid lines are ranked 

according to the Gain Ratio (GR). GR enables to select 

most important characteristics of a line evaluating the 

worth of them with respect to the predicted attribute. 

Attributes with GR=0 will be discarded. Most relevant 

features are shown in Table II. The classifier was 

trained using only the 42 attributes with a meaningful 

GR. 

# GR Feature Description 

1 0,4783 
Length of line section with rigid RP5-

type isolation 

2 0,4222 
Num. of transformation points on utility 

pole 

3 0,3661 Section type of a MV line 

4 0,3075 
Sub-type of component belonging to a 

MV line 

5 0,2417 
Available power (kW) for MV clients in 

middle concentration areas 

6 0,2163 
Type of component belonging to a MV 

line 

7 0,1823 
Length of line section with S-type 

isolation 

8 0,1742 
Absolute variance (on average) between 

two consecutive current value 

9 0,1675 Type of installation 

10 0,1590 Length of naked aerial line section  
 

Table II. Top 10 features ranked by Gain Ratio 

 

Running the classification algorithm with the above 

settings, a possible rule (R1) is extracted: a power line is 

particularly prone to mechanical failure if it consists of: 

(i) an aerial section; (ii) a section with a rigid isolation 

of type RP5 with a length less than about 150 meters; 

(iii) between 6 and 12 secondary power grid 

substations; (iv) lacking of motorized switch-

disconnectors and conductor junctions. Notice that the 

rule is based on structural features of the MV line, due 

to their high GR value. However, it could be also useful 

to obtain further rules related to different attributes. In 

this case the classifier can be re-trained on the same 

dataset but selecting only a subset of initial attributes, 

e.g., the ones derived from contextual conditions and 

current variations. A novel rule (R2) can be so derived: 

from January to September and in particular during 

Saturday, power lines are prone to structural failure if 

they present: (i) more than two automated secondary 

power grid substations; (ii) an available power less 

than 9000 kW on the line for MV clients in high 

concentration area; (iii) current values during the last 

week with a standard deviation less than 26 A or 

greater than 39 A and an absolute variance (on 

average) greater than about 1.40% between two 

consecutive current values.  

Consider that the above rules have been obtained via a 

fully automated approach, without the domain expert 

support. They could evidence obvious or already known 

situations, but also highlight new and original 

correlations between data. The experts should select and 

validate derived rules using them in redeploying the 

company maintenance procedures. In addition, as shown 

in Figure 5, for each line the classifier predicts an event 

with the related probability. Hence, it is also possible to 

refine the prediction by considering as reliable only the 

events with a confidence level greater than a threshold 

value. An empirical evaluation was executed to assign 

this value (TP = 0.75) granting the highest accuracy of 

the prediction algorithm. 

Detected rules can be finally converted in a semantic-

based annotation. For example, the R2 expressed in 

Description Logic [8] notation w.r.t. the reference 

ontology is: 

R2 ≡   during.(¬ October ⊓ ¬ November ⊓ ¬ December)  ⊓ 

≥ 2 hasAutomatedSecondarySubstation ⊓ 

  hasAvailablePower.(HighConcentrationArea ⊓ ≤ 9000 

kWatt) ⊓   hasStandardDeviation.( ≤ 26 Ampere ⊓ ≥ 39 

Ampere) ⊓   hasAbsoluteVariance.( ≥ 14 perMil) 

 

In order to assess the feasibility of the proposed 

approach, an early performance evaluation was carried 

out for both data aggregation and failure prediction 

using the dataset about MV line data described in 

Section 2. For data aggregation, experiments basically 

aimed to: (i) measure the aggregation rate for the values 

of current; (ii) assess possible benefits w.r.t. a general-

purpose compression algorithm; (iii) evaluate the 

information loss during the aggregation process. 
 Worst Case Best Case 

Num. of observations 4370 

Data Size (kB) 135.85 135.69 

Num. of aggregated 

observations 
1176 44 

Aggregated Size (kB) 51.65 1.99 

GZIP Size (kB) 14.49 10.83 

Aggregated + GZIP Size (kB) 9.67 0.32 

Absolute information loss (A) 0.4 < 0.001 

Relative information loss (%) 11.42 < 0.1 
 

Table III. Data aggregation results 

 

Table III shows the results obtained evaluating values of 

current for all 126 MV lines during the 27 months 

observation. Reported data are the average of single 

month results for a single line. In particular worst and 

best case represent a MV line with many and few 

current fluctuations, respectively. Notice that 

performance of the aggregation algorithm strongly 

depend on the current trend, in fact long sections of 

similar data can be easily aggregated whereas many 

variations need more storage space. However in both 

cases aggregation allows to considerably reduce the 

amount of data and in the best case it is also more 

efficient than GZIP
1
 (used as reference compression 

algorithm). The combined usage of aggregation and 

general-purpose compression allows to obtain a 

                                                           
1
 RFC 1952, GZIP file format specification, version 4.3, May 1996, 

http://www.ietf.org/rfc/rfc1952.txt 
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remarkable reduction up to about 8.70% of the initial 

data size (considering the whole dataset), from 471 MB 

to 41 MB of storage memory. 

Furthermore, to evaluate the information loss during the 

aggregation process, a comparison was made between 

early values and data rebuilt after aggregation. Table III 

also reports both absolute (Ampere) and relative 

(percentage error w.r.t. the average in a month) 

information loss. Also in this case, numerous variations 

lead to worst performance in terms of accuracy of data 

reconstruction. Anyway, the average relative 

approximation due to aggregation is of about 4% with 

respect to the initial values. Figure 6 shows a 

comparison between real (in red) and aggregated values 

(in blue) highlighting possible difference in the current 

trends. 

 
 

Figure 6. Data Analysis tool – Visualization of original (in blue) and 
rebuilt (in red) values 

 

Finally an evaluation of the event prediction module 

was conducted to measure the accuracy of the proposed 

classifier. J48 was chosen as reference algorithm after a 

preliminary campaign: all algorithms were used to build 

a forecasting model, but higher accuracy was obtained 

with J48. The confusion matrix shown in Table IV 

reports on the weighted precision of the classifier and 

on single precision and recall values for each event.  

Event A B C D E 
Recall 

(%) 

(A) Mechanical 

Failure 
1 2 0 0 0 33.3 

(B) Structural 

Failure 
3 27 0 1 0 87.1 

(C) Water 

Infiltration 
0 0 0 0 0 N.D. 

(D) Breakage 0 1 0 4 0 80.0 

(E) Generic 

Failure 
0 3 0 0 3 50.0 

Precision (%) 25.0 81.8 N.D 80.0 100 77.8 

 
Table IV. Confusion Matrix 

 

A prediction becomes true if the model allows 

prognosticating that a specific event occurs on a line 

within the test period. Observe that the classifier 

precision and recall are very high in case of structural 

failures, whereas they are lower for mechanical 

malfunctions. This is due to the short number of cases in 

both the training and validation datasets. However the 

precision can be further improved discarding, as said 

above, instances with a prediction confidence less than 

TP. In this case the algorithm reaches an overall 

precision of about 83%. 

4. CONCLUSION AND FUTURE WORK 

Early results were presented of an ongoing work on a 

dynamic, semantic-based and multidimensional 

knowledge discovery framework for grid failure 

prediction. Grid data cleaning (needed to provide an 

adequate input to the system for prognoses) was a lot 

more challenging than expected, requiring joint effort of 

analysts and domain experts to understand the 

peculiarities of the source database gathering stage. 

Furthermore, the scarcity of failure event data 

conditioned the effectiveness of the employed machine 

learning and inference algorithms. Nevertheless, the 

knowledge discovery process was able to identify non-

obvious patterns characterizing grid interruption events. 

Performance of data aggregation has been satisfactory. 

Further work is being done to improve the information 

cleaning and the machine learning tasks. Once the data 

management process is consolidated, the expansion of 

the data set with historical data and information 

extracted from other archives will allow to increase the 

effectiveness of the framework. Finally, a user interface 

exploiting the semantic characterization of information 

is being developed to support distributor managers in 

decision-making about grid maintenance. 
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