
CIRED Workshop - Rome, 11-12 June 2014

Paper 0350

Paper No 0350 Page 1 / 6

AAETI A HIERARCHICAL METHODOLOGY TO DESIGN AND TEST MICROGRID

SUPERVISOR SYSTEMS

 Edoardo CORSETTI Giuseppe A. GUAGLIARDI Carlo SANDRONI

 RSE – Italy RSE – Italy RSE – Italy

 corsetti@rse-web.it guagliardi@rse-web.it sandroni@rse-web.it

ABSTRACT

This work proposes the AAETI (Agent Automata

Extended with TIme constraints) methodology to deal

with the design of the control operation and safety of a

microgrid. We tested AAETI to design the behaviour of

the supervisor system of a rural low voltage microgrid.

In particular, the goal of this supervisor is to manage

the microgrid during the disconnection of part of loads,

it verifies whether there is the possibility to recover the

grid equilibrium with local actions or computing a new

power balance.

INTRODUCTION

The exponential growth of green (intermittent and non-

controllable) generation poses many problems to

operation and control of electricity networks. These

problems prevent to capture the full benefits arising

from renewable generation. In order to overcome these

difficulties new powerful and flexible automation and

control systems must be designed and developed. The

operation of these systems upon low and medium

voltage electricity networks can enhance the network

management even with a massive presence of renewable

generation.

To guarantee the safety of a microgrid it is necessary to

develop a specific safety plan, able to cover the possible

emergency situations. Typical outages possibly

occurring on an electric microgrid include ([5]):

• overloaded lines, and possibly uncontrolled

cascades of line tripping;

• voltage reduction, possibly leading to voltage

collapse caused by reduced reactive power

support;

• local area transient stability problems, related

to the increase of long distance interchanges

and coupled with the risk of reduced voltage

support, inter-area oscillations due to the

interconnection, intervention of protecting

devices (overcurrent protections, differential

protections) causing cascading events;

• hidden failures of the protection system,

specific plans are used to ensure that the

overall microgrid (or even virtual power

plants) is protected against major disturbances

involving multiple contingency events. This

objective can only be reached with coordinated

automatic emergency measures.

In this paper we propose the AAETI - Agent Automata

Extended with TIme constraints, a methodology to

support the specification, design and test of automation

and control systems. This methodology supports the

specification phase to represent system functionality by

means of a hierarchy of agents interacting through

communication channels. An agent is described by

means of the operational model of timed automata.

AAETI also supports the design phase providing an

automatic translation step of agents into executable code

and it also supports wrapping an existing functionality

into an agent to merge the set of agent/ functionality

into an executable program. The control system built

can be tested against a given electricity network

simulated by DIgSILENT Power Factory
©
. The control

system and the grid simulator are faced with a

synchronized evaluation loop and a data exchange

protocol.

AAETI, thanks to the notion of agent and to the

hierarchy among them, constitutes a flexible platform to

specify and test a wide class of control systems

architectures: centralized, decentralized and hierarchical

control ones [4].

The paper is organized as follows: first an overview of

the AAETI methodology is proposed, then the main

agent specification features are sketched, in the third

chapter an applicative example illustrates the AAETI

ability to specify control systems, a final chapter

discusses the verification and validation steps supported

by the methodology. Conclusions propose the future

development.

AAETI METHODOLOGY OVERVIEW

AAETI (Agent Automata Extended with TIme

constraints) is a specification and design technique for

hierarchical automation systems. In an AAETI control

system the basic unit is the agent, which isolates a

specific component (functionality), thus the overall

control system is a collection of cooperating agents. In

AAETI the system specification is given as a pool of

agents hierarchically ordered ([6]). These agents

monitor and control the plant according to a macro

cycle consisting of acquiring the plant variables

(monitor) and performing the decision on plant

(actuation). Then the specification execution computes

each module (i.e., agent) according to a twofold analysis

of the hierarchy in two distinct phases, called:

CIRED Workshop - Rome, 11-12 June 2014

Paper 0350

Paper No 0350 Page 2 / 6

• the upward phase

• the downward phase.

In the former, signals collected in the monitoring phase

or variable settings generated by the elaboration of

lower level agents are progressively made available to

the upper levels of the agent hierarchy, until the top

agent/s is/are reached. At this point, the downward

phase is started: first are computed agents at the top of

the hierarchy and progressively those at the lower

levels. In downward computation decisions elaborated

by the coarser agents are made available to the lower

levels of the hierarchy. By means of the connection

between agents each agent can make available its own

knowledge to several agents, and can access the

knowledge of one or more agents. Each agent is

associated with four sets of connections: <U-I; U-O; D-

I; D-O>. U-I denotes the set of input data owned by

lower level agents made available during the upward

computation phase. U-O denotes the set of upward

output data, i.e. connections used to make agent

information available to the upper level agents during

the upward computation phase. D-I denotes data made

available by agents at higher level of the hierarchy to

the current agent during the downward computation

phase. Finally, D-O denotes the set of output that can be

made available to lower level agents during the

downward computation phase. Next figure illustrates a

representation of the agents and the different types of

connections with other agents, coherently with the

hierarchy levels and computation direction flow.

Downward-Input (D-I) Upward-Output (U-O)

Agent behaviour design

Downward-Output (D-O) Upward-Input (U-I)

Figure 1 - Agent connection specification

The agent evaluation, in the upward or in the downward

direction, can start once the set of (corresponding) input

are available. Thus, each input data type is a queue.

Output data are made available to the connected agents

once the agent evaluation has ended.

The agent evaluation strongly order the upward phase

and the downward phase. Errore. L'origine

riferimento non è stata trovata. shows an example of

agent hierarchy. It concerns the control system

associated to a microgrid that includes two feeders, and

associated to each one there are a number of nodes.

AAETI methodology associates an agent to each node,

section (nodes part of a feeder), feeder and the

supervisor.

The set of agents are hierarchically ordered, as shown in

Errore. L'origine riferimento non è stata trovata.,

with reference to the applicative example chapter. The

figure represents the upward control flow by blue

arrows, and the downward control flow by red arrows.

Figure 2 – Agents of a microgrid components

Figure 3 - The hierarchy of agents representing the
microgrid control system

At the beginning of the evaluation cycle each node

controller receives signals from the controlled system

(i.e., transformers, generators, electrical loads, and so

on). The upward evaluation of the specification starts

considering the whole set of node controller agents:

these agents are evaluated without a priority order as

they belong to the same hierarchy level. The upward-

downward evaluation of an agent consists in executing

an automaton and, once the automaton evaluation ends,

sending all the output signals to the destination agents.

Each section agent waits for the upward inputs coming

from node agents evaluation. Node controller agent,

once upward evaluation has ended, waits to start the

downward computation until all the section agents

linked to its downward input connection have sent the

specified data. Each section agent starts its own upward

computation when all signals coming from node

controllers linked to the upward input connection have

terminated their computation. Each section agent ends

upward evaluation and waits to start downward

computation until the connected feeder agents have sent

the output data. The upward computation ends when the

supervisor agent has been evaluated. Actually, the

evaluation of an agent placed at the top of the hierarchy,

i.e. without upward output and downward input

CIRED Workshop - Rome, 11-12 June 2014

Paper 0350

Paper No 0350 Page 3 / 6

connections, is not distinguished in up and down. The

methodology does not limit the top of the hierarchy to

just one agent. In general, multiple agents at the top

level of the hierarchy are permitted. These agents are

not hierarchically ordered among them.

The downward computation follows the same schema of

the upward one. The end of computation of the

supervisor agent enables the downward computation of

feeder agents. The downward computation considers as

many agent types as foreseen in the specification. The

downward computation stops once each node agent has

been evaluated.

The node agents at the bottom level actuate orders to the

controlled grid components. The computation continues

gathering the input coming from grid components

enabling a new upward computation.

AGENT SPECIFICATION

Here are proposed a number of language features to

specify control agents.

Agent classes and instances

An agent identifies a type of functionality owned by an

actor involved into the control system of a microgrid.

Such a component has specific knowledge, inference

abilities, and interacts with other agents in order to

pursue a specific goal. AAETI distinguishes between

the class of functionality, representing the function as a

general schema, from a specific instance.

Agent hierarchy

Among the agents belonging to a specification it is

possible to state causal relationships which prescribe

fixed causal priorities by means of data connections.

Then causal order between agents to fix control

evaluation is defined according to the data driven flow.

The language provides also the possibility to state a

hierarchy concerning time dependencies among agents.

In particular, time dependencies can represent the

different time constants according to the agents perform

their task (see [Corsetti, 2013]). That is, agents

operating at lower levels are thought to quickly react to

external events, and refer to finer time domains.

Conversely, higher level agents, devoted to elaborate

information gathered by lower level agents and

formulate broader strategies, can require larger time

than the previous ones, and thus the time domains they

refer to are coarser grain than the other. The language

does not provide a correlation between the timed and

causal hierarchies, but it is a good practice to maintain a

strict correspondence between them.

Connection between agents

Connections are the way agents can exchange data. A

connection is a directional channel set between two

agents to refer and modify the attributes defined in the

connected agent at the current instant. Connections into

an agent class are distinct as in Figure 1. The agent class

specified within a connection identifies the set of

instances where the connection elements will be taken

and these elements are identified by means of the

variable declared in the definition of the connection. In

an agent instance each connection is represented by a

specific set of instances of the agent class connected to.

Agent behavior

The specification of an agent behavior is naturally

expressed by means of a timed automaton. The general

definition of finite state function is composed of a

(finite) number of states, which can be put into

correspondence with the controlled system states. The

automaton is also composed of edges that allow to move

from a state to another in presence of a specific input

signal to the function. Associated to each edge there is a

condition. Once the condition is satisfied it is possible to

move from the current state to the one connected by the

edge. We refer to the automaton state change by

transition.

Automata are able to represent finite behaviors as well

as infinite ones. In the former case a (set of) terminal

state is identified. When a transition brings to a terminal

state the automaton stops its computation. In the latter

case, the automaton is not expected to terminate its

computation, in these cases the automaton must follow

the system behaviors possibly for an infinite time. In

these automata the sequence of states is infinite, and this

lead to name them ω-automata. The basic definition of

ω-automata were extended in order to represent

temporal behaviors of control systems [1].

A timed automaton is a classical finite state automaton

which can manipulate clocks, evolving continuously

and synchronously with an absolute time. In a timed

automaton each transition is labeled by a constraint over

clock values (sometimes called guard), which indicates

when the transition can fire, and a set of clocks to be

reset when the transition fires. Each clock keeps track of

the time elapsed since the last reset, and can be reset

independently from the other clocks. The transitions of

the automaton put certain constraints on the clock

values: a transition may be taken only if the current

values of the clocks satisfy the associated constraints.

Each location is constrained by an invariant, which

restricts the possible values of the clocks for being in

the state, which can then enforce a transition to be

taken). We recall some notions from [2].

The agent specification is completed with the possibility

to declare integrity constraints. Integrity constraints

allow to rule parameter values. They are evaluated at the

beginning of the agent evaluation and after the automata

evaluation.

CIRED Workshop - Rome, 11-12 June 2014

Paper 0350

Paper No 0350 Page 4 / 6

AN APPLICATIVE EXAMPLE

In this section an applicative example is sketched to

show the expressive ability of the automata model, and

how the methodology can solve a decision problem. The

solution will be found taking into account local (node)

and global (microgrid) strategies and ensuring the

selection of the best one.

The smart grid application domain

The study case considered is a real rural medium

voltage (20 kV) network connected to the distribution

network. The network, shown in Figure 2, is composed

of 32 MV nodes, distributed along two radial feeders,

each of them about 25 km long. Some of the loads are

connected to medium voltage nodes and some to low

voltage nodes, and are classified in 5 classes (industrial,

agricultural, residential, tertiary, public lighting), for 13

MW as a whole. There are 8 distributed generators

(3 gas turbines, 3 wind turbines, 2 photovoltaics), each

of them capable of about 5 MW of active power.

Both loads and generators are associated to hourly

profiles of consumption and production, so the entire

network can be studied in different working points. In

this study case the 7 a.m. working point has been

chosen: this situation is characterized by low load and

high generation, leading to overvoltage issues. In this

context, a particularly hard event has been introduced:

the sudden disconnection of two loads (C03 and C18

highlighted in Figure 2 with orange triangles) of feeder

A, losing about 2.5 MW in total. This event leads to an

instantaneous 2% voltage increase in some nodes of the

network close to the occurrence of the events. Actually,

if during the outage the voltage value does not remain

within a fixed range (±10%) the strategy must be

defined and applied within 5 sec. The time constraint is

devoted to avoid the intervention of generator

protections which disconnects the generator from the

grid within this time interval.

Formalization of a study of case

The microgrid supervisor agent is defined at the top of

the hierarchy. At a lower level there are the two feeders:

feeder A and feeder B. In order to develop better

strategies between the feeder level and the node level,

the section level has been introduced. The section level

gathers a subset of the nodes, belonging to the same

feeder, which are geographically near. At last, the node

level represents the bottom of the hierarchy and the

interface of the control system with the real electrical

components.

The whole set of agents representing the microgrid

control system is hierarchically linked as shown in

Errore. L'origine riferimento non è stata trovata..

The role of microgrid supervisor is to gather the

information/decision coming from the lower levels and

verify, when a fault occurs, whether the local strategies,

taken at section or feeder levels, are optimal or there is

the need to compute a new equilibrium point in order to

recover the network operation. This analysis is carried

on at the end of the upward evaluation. In the former

case it enables lower level agents to perform the

decisions in the downward evaluation. In the latter case,

it denies the lower level agents to proceed to apply

decisions. Supervisor agent starts the computation of a

new operation point for generation and load. This can

require more than one evaluation cycle, but must be

carried out within 5 seconds. Once Supervisor has found

the solution, communicates to lower level agents the

decisions to be executed.

In the following a sketch of the agent specifications is

given providing a view of the associated automata.

Automata specification will be expressed by means of a

graphical language: circles denote automata states,

edges denote transitions, labels on edges represent

transition specification. Double line circle denote the

initial state and blue circles denote final states. Boxes

with round corners denote macro states, that is a

synthetic view of a number of state and transitions. We

adopted macro state as a syntactic sugar in order to

detail the specification elsewhere without losing the

essential logic.

Node agent
The Node_controller agent is the lowest controller in the

system hierarchy, a sketch of the associated automaton

is proposed in Figure 4. The initial state is the S1

normal_operation. In this state it checks whether a

load_disconnection event has occurred. In this case, the

total amount of load loss is computed, scanning each

connected load, and then, in a similar way, it computes

the total reduction margin of connected generation. If

the load loss can be locally compensated with a

generation reduction, the agent reaches the S2 state

able_to_reduce_power, otherwise it reaches the S3 state

unable_to_reduce_power. Transition A is enabled by the

section connected agent in order to locally recover the

generation reduction. The node agent proceeds to lower

the generation level. At each cycle if no load

disconnection has occurred the transition B of the agent

computes the generation reduction margin. This data

can be useful in case this agent is involved in a

generation reduction when a load disconnection occurs

somewhere else in the network. At the end of the

computation it returns to the S1 state normal_operation with

the transition C.

CIRED Workshop - Rome, 11-12 June 2014

Paper 0350

Paper No 0350 Page 5 / 6

Figure 4 - Node controller agent automaton

Section agent
The automaton associated to the section agent is

sketched in Figure 5, the initial state is the S1

normal_operation. In S1 agent checks whether at least one

connected node controller has communicated a load_

disconnection event. If it is the case it counts the number

of nodes having a load disconnection, how many of

them are in able_to_reduce_power state and how many are

in unable_to_reduce_power state, and finally how much

generation reduction margin comes from nodes in

normal_operation state. If every node with a load

disconnection is in able_to_reduce_power, or if the number

of unable_to_reduce_power nodes is lower or equal then 2

and they can be compensated by a reduction in other

nodes, the section reaches state S3 able_to_reduce_gen. If

the number of unable_to_reduce_power nodes is lower or

equal than 2 and they cannot be compensated by a

reduction in other nodes, the section reaches state S4

find_recovery_section. If the number of nodes with load

disconnections is greater than 2, the section agent

reaches S2 new_balance state. Finally, if no load_

disconnection event has been received, the agent computes

the generation reduction margin of all the connected

nodes find_oprating_nodes and moves back to S1

normal_operation state.

Figure 5 - Section agent automaton

Feeder agent
The automaton associated to the feeder agent is

sketched in Figure 6. In S1 normal_operation feeder checks

for a load_disconnection event incoming from the

connected sections. If it is the case, it verifies if every

section with a load disconnection is in able_to_reduce_gen

state, the feeder reaches S2 able_to_reduce_gen state. If

there’s at least one faulty section in find_recovery_section,

feeder checks if there are sections which can recover the

generation excess. If this is the case feeder reaches the

S2 able_to_reduce_gen state, otherwise it reaches S3

new_balance state, sending a request to the supervisor to

compute a new grid balance. Feeder moves to the state

S3 new_balance state anyway if the number of load

disconnections is greater than 2.

Figure 6 - Feeder agent automaton

Microgrid supervisor agent
The automaton associated to the supervisor agent is

sketched in Figure 7. The initial state S1 normal_operation,

checks for a load_disconnection event incoming from the

connected feeder agents. If it is the case and every

feeder with a load disconnection is in able_to_reduce_gen

state, and the total number of faults is not greater then 2,

the agent reaches S3 local_recovery state, that enables the

local actions in each underlying agent. Otherwise, the

state S2 new_balance is reached: this state implies an

optimal power flow calculation to get a new equilibrium

in the whole microgrid.

Figure 7 - Supervisor agent automaton

VERIFICATION AND VALIDATION

The AAETI abilities to verify and validate control

system specification are supported by an environment

including these components:

• an XML interface to express the specification

by means of a set of agent classes, to define

general functionality, and a set of agent

CIRED Workshop - Rome, 11-12 June 2014

Paper 0350

Paper No 0350 Page 6 / 6

instances that represent a specific component;

• an automatic translator to transform a

specification in an executable code;

• an inference engine to execute the program

couple with an electric grid simulator via data

exchanging;

Translation of an AAETI specification

A specification is automatically translated to obtain an

executable code from the specification. The translation

is defined according to a set of specific rules, that put

into correspondence each agent construct with a specific

object or method of an object oriented programming

(OOP) environment, exploiting the structural induction

on the components of the agents. In particular, the OOP

notions of object, attribute and method have been put

into correspondence, respectively, with the AAETI

agent, attribute and behaviour description.

Multi-agent inference engine

The AAETI inference engine manages the cyclic

evaluation of a control system specification by means of

a scheduling list of the agents, and provides a number of

library functions to support the evaluation of each agent

for the current cycle.

The scheduling list order agents first according to the

upward hierarchy and then according to the downward

hierarchy.

For each evaluation cycle, each agent is selected from

the scheduling list, according to the order, and then it is

executed. The agent execution consists of:

• evaluating each attribute definition in order to

update the attribute value;

• evaluating the set of specified rules.

The agent upward evaluation policy ensures that, once

the low hierarchy level agents acquire the controlled

system status, the higher level agents are able to plan

and actuate the best strategy. However, the policy to

evaluate agents can be modified just revising the access

to the scheduling list. As an example, we are currently

studying the effects of an upward-downward policy on

the agents abilities. Indeed, this policy allows both: to

gather the power system status (upward evaluation) and

to collect the set of plans defined by the coarser level

agents (downward evaluation) in order to optimize the

actions to be performed.

The inference engine just depicted is mainly tailored on

the verification and validation of the defense plan,

rather than the deployment of the control system on the

microgrid. The AAETI execution abilities presented so

far are centered on the specification. The deployment of

the control system on a real power system will be the

subject of a next research activity.

Validation of a specification

The validation of a defense plan has the role to measure

the ability of a set of actions to prevent blackout of a

power system in a specified status. In particular, the

main aim of this phase is to test whether the defense

plan is able to:

• recognize the event, or the network status, that

can lead to the complete blackout;

• plan and apply suitable actions in order to

confine, as far as possible, criticalities;

• allow the fast restoration of the faulted power

system components with respect to different

power system configurations.

CONCLUSIONS

The paper proposed the AAETI methodology to test the

specification and design of automation and control

systems for microgrids. The specification of a load

shedding has been proposed in order to show the

AAETI ability. AAETI can be thought as a general

platform to host different microgrid control

architectures, such as centralized or distributed

architectures. Currently we are taking into account the

possibility to build on AAETI the automation and

control architecture for smart grids, studying also the

agent communication issue not considered till now.

REFERENCES

[1] Model-checking in dense real-time, R. Alur, C.

Courcoubetis, D.L. Dill, Information and

Computation 104(1):2-34, 1993;

[2] A theory of timed automata, R. Alur, D.L. Dill,

Theoretical Computer Science 126:183-235, 1994;

[3] Automata Agents Extended with Time Constraints to

deal with Smart Grid Control System Specification

and Validation, E. Corsetti, G. A. Guaglairdi, C.

Sandroni, submitted for the revision to Journal of

Software and System Modeling, for the special issue

of Integrated Formal Methods, 2014;

[4] Advanced Control Architectures for Intelligent

MicroGrids – Part I: Decentralized and

Hierarchical Control, J.M Guerrero, M.

Chandorkar, T. Lin Lee, P. C. Loh, IEEE Trans. on

Industrial Electronics, vol. 60, n.4, pp 1254-1262,

April 2013;

[5] Microgrids and Active Distribution Networks, S.

Chowdhury, S.P. Chowdhury and P. Crossley,

Published by The Institution of Engineering and

Technology, London, United Kingdom, 2009;

[6] Simulation of high-voltage Substations on Parallel

Architectures, Botti O., Cesana M. Corsetti E.,

Proceedings of the International Conference

HPCN96 - High Performance Computing and

Networking - Brussels, April 96.

