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ABSTRACT 

This work proposes the AAETI (Agent Automata 

Extended with TIme constraints) methodology to deal 

with the design of the control operation and safety of a 

microgrid. We tested AAETI to design the behaviour of 

the supervisor system of a rural low voltage microgrid. 

In particular, the goal of this supervisor is to manage 

the microgrid during the disconnection of part of loads, 

it verifies whether there is the possibility to recover the 

grid equilibrium with local actions or computing a new 

power balance.  

INTRODUCTION 

The exponential growth of green (intermittent and non-

controllable) generation poses many problems to 

operation and control of electricity networks. These 

problems prevent to capture the full benefits arising 

from renewable generation. In order to overcome these 

difficulties new powerful and flexible automation and 

control systems must be designed and developed. The 

operation of these systems upon low and medium 

voltage electricity networks can enhance the network 

management even with a massive presence of renewable 

generation. 

 

To guarantee the safety of a microgrid it is necessary to 

develop a specific safety plan, able to cover the possible 

emergency situations. Typical outages possibly 

occurring on an electric microgrid include ([5]): 

• overloaded lines, and possibly uncontrolled 

cascades of line tripping; 

• voltage reduction, possibly leading to voltage 

collapse caused by reduced reactive power 

support; 

• local area transient stability problems, related 

to the increase of long distance interchanges 

and coupled with the risk of reduced voltage 

support, inter-area oscillations due to the 

interconnection, intervention of protecting 

devices (overcurrent protections, differential 

protections) causing cascading events; 

• hidden failures of the protection system,   

specific plans are used to ensure that the 

overall microgrid (or even virtual power 

plants) is protected against major disturbances 

involving multiple contingency events. This 

objective can only be reached with coordinated 

automatic emergency measures.   

 

In this paper we propose the AAETI - Agent Automata 

Extended with TIme constraints, a methodology to 

support the  specification, design and test of automation 

and control systems. This methodology supports the 

specification phase to represent system functionality by 

means of a hierarchy of agents interacting through 

communication channels. An agent is described by 

means of the operational model of timed automata. 

AAETI also supports the design phase providing an 

automatic translation step of agents into executable code 

and it also supports wrapping an existing functionality 

into an agent to merge the set of agent/ functionality 

into an executable program. The control system built 

can be tested against a given electricity network 

simulated by DIgSILENT Power Factory
©
. The control 

system and the grid simulator are faced with a 

synchronized evaluation loop and a data exchange 

protocol.  

AAETI, thanks to the notion of agent and to the 

hierarchy among them, constitutes a flexible platform to 

specify and test a wide class of control systems 

architectures: centralized, decentralized and hierarchical 

control ones [4].  

 

The paper is organized as follows: first an overview of 

the AAETI methodology is proposed, then the main 

agent specification features are sketched, in the third 

chapter an applicative example illustrates the AAETI 

ability to specify control systems, a final chapter 

discusses the verification and validation steps supported 

by the methodology. Conclusions propose the future 

development. 

AAETI METHODOLOGY OVERVIEW 

AAETI (Agent Automata Extended with TIme 

constraints) is a specification and design technique for 

hierarchical automation systems. In an AAETI control 

system the basic unit is the agent, which isolates a 

specific component (functionality), thus the overall 

control system is a collection of cooperating agents. In 

AAETI the system specification is given as a pool of 

agents hierarchically ordered ([6]). These agents 

monitor and control the plant according to a macro 

cycle consisting of acquiring the plant variables 

(monitor) and performing the decision on plant 

(actuation). Then the specification execution computes 

each module (i.e., agent) according to a twofold analysis 

of the hierarchy in two distinct phases, called: 
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• the upward phase  

• the downward phase. 

In the former, signals collected in the monitoring phase 

or variable settings generated by the elaboration of 

lower level agents are progressively made available to 

the upper levels of the agent hierarchy, until the top 

agent/s is/are reached. At this point, the downward 

phase is started: first are computed agents at the top of 

the hierarchy and progressively those at the lower 

levels. In downward computation decisions elaborated 

by the coarser agents are made available to the lower 

levels of the hierarchy. By means of the connection 

between agents each agent can make available its own 

knowledge to several agents, and can access the 

knowledge of one or more agents. Each agent is 

associated with four sets of connections: <U-I; U-O; D-

I; D-O>. U-I denotes the set of input data owned by 

lower level agents made available during the upward 

computation phase. U-O denotes the set of upward 

output data, i.e. connections used to make agent 

information available to the upper level agents during 

the upward computation phase. D-I denotes data made 

available by agents at higher level of the hierarchy to 

the current agent during the downward computation 

phase. Finally, D-O denotes the set of output that can be 

made available to lower level agents during the 

downward computation phase. Next figure illustrates a 

representation of the agents and the different types of 

connections with other agents, coherently with the 

hierarchy levels and computation direction flow. 

Downward-Input      (D-I) Upward-Output  (U-O) 

Agent behaviour design 

Downward-Output     (D-O) Upward-Input      (U-I) 

Figure 1 - Agent connection specification 

The agent evaluation, in the upward or in the downward 

direction, can start once the set of (corresponding) input 

are available. Thus, each input data type is a queue. 

Output data are made available to the connected agents 

once the agent evaluation has ended. 

The agent evaluation strongly order the upward phase 

and the downward phase. Errore. L'origine 

riferimento non è stata trovata. shows an example of 

agent hierarchy. It concerns the control system 

associated to a microgrid that includes two feeders, and 

associated to each one there are a number of nodes. 

AAETI methodology associates an agent to each node, 

section (nodes part of a feeder), feeder and the 

supervisor. 

The set of agents are hierarchically ordered, as shown in 

Errore. L'origine riferimento non è stata trovata., 

with reference to the applicative example chapter. The 

figure represents the upward control flow by blue 

arrows, and the downward control flow by red arrows. 

 

 

 
Figure 2 – Agents of a microgrid components 

 
Figure 3 - The hierarchy of agents representing the 
microgrid control system 

At the beginning of the evaluation cycle each node 

controller receives signals from the controlled system 

(i.e., transformers, generators, electrical loads, and so 

on). The upward evaluation of the specification starts 

considering the whole set of node controller agents: 

these agents are evaluated without a priority order as 

they belong to the same hierarchy level. The upward-

downward evaluation of an agent consists in executing 

an automaton and, once the automaton evaluation ends, 

sending all the output signals to the destination agents. 

Each section agent waits for the upward inputs coming 

from node agents evaluation. Node controller agent, 

once upward evaluation has ended, waits to start the 

downward computation until all the section agents 

linked to its downward input connection have sent the 

specified data. Each section agent starts its own upward 

computation when all signals coming from node 

controllers linked to the upward input connection have 

terminated their computation. Each section agent ends 

upward evaluation and waits to start downward 

computation until the connected feeder agents have sent 

the output data. The upward computation ends when the 

supervisor agent has been evaluated. Actually, the 

evaluation of an agent placed at the top of the hierarchy, 

i.e. without  upward output and downward input 
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connections, is not distinguished in up and down. The 

methodology does not limit the top of the hierarchy to 

just one agent. In general, multiple agents at the top 

level of the hierarchy are permitted. These agents are 

not hierarchically ordered among them. 

 

The downward computation follows the same schema of 

the upward one. The end of computation of the 

supervisor agent enables the downward computation of 

feeder agents. The downward computation considers as 

many agent types as foreseen in the specification. The 

downward computation stops once each node agent has 

been evaluated.  

The node agents at the bottom level actuate orders to the 

controlled grid components. The computation continues 

gathering the input coming from grid components 

enabling a new upward computation.  

AGENT SPECIFICATION 

Here are proposed a number of language features to 

specify control agents. 

Agent classes and instances 

An agent identifies a type of functionality owned by an 

actor involved into the control system of a microgrid. 

Such a component has specific knowledge, inference 

abilities, and interacts with other agents in order to 

pursue a specific goal. AAETI distinguishes between 

the class of functionality, representing the function as a 

general schema, from a specific instance. 

Agent hierarchy 

Among the agents belonging to a specification it is 

possible to state causal relationships which prescribe 

fixed causal priorities by means of data connections. 

Then causal order between agents to fix control 

evaluation is defined according to the data driven flow. 

The language provides also the possibility to state a 

hierarchy concerning time dependencies among agents. 

In particular, time dependencies can represent the 

different time constants according to the agents perform 

their task (see [Corsetti, 2013]). That is, agents 

operating at lower levels are thought to quickly react to 

external events, and refer to finer time domains. 

Conversely, higher level agents, devoted to elaborate 

information gathered by lower level agents and 

formulate broader strategies, can require larger time 

than the previous ones, and thus the time domains they 

refer to are coarser grain than the other. The language 

does not provide a correlation between the timed and 

causal hierarchies, but it is a good practice to maintain a 

strict correspondence between them. 

Connection between agents 

Connections are the way agents can exchange data. A 

connection is a directional channel set between two 

agents to refer and modify the attributes defined in the 

connected agent at the current instant. Connections into 

an agent class are distinct as in Figure 1. The agent class 

specified within a connection identifies the set of 

instances where the connection elements will be taken 

and these elements are identified by means of the 

variable declared in the definition of the connection. In 

an agent instance each connection is represented by a 

specific set of instances of the agent class connected to. 

Agent behavior 

The specification of an agent behavior is naturally 

expressed by means of a timed automaton. The general 

definition of finite state function is composed of a 

(finite) number of states, which can be put into 

correspondence with the controlled system states. The 

automaton is also composed of edges that allow to move 

from a state to another in presence of a specific input 

signal to the function. Associated to each edge there is a 

condition. Once the condition is satisfied it is possible to 

move from the current state to the one connected by the 

edge. We refer to the automaton state change by 

transition. 

Automata are able to represent finite behaviors as well 

as infinite ones. In the former case a (set of) terminal 

state is identified. When a transition brings to a terminal 

state the automaton stops its computation. In the latter 

case, the automaton is not expected to terminate its 

computation, in these cases the automaton must follow 

the system behaviors possibly for an infinite time. In 

these automata the sequence of states is infinite, and this 

lead to name them ω-automata. The basic definition of 

ω-automata were extended in order to represent 

temporal behaviors of control systems [1].  

 

A timed automaton is a classical finite state automaton 

which can manipulate clocks, evolving continuously 

and synchronously with an absolute time. In a timed 

automaton each transition is labeled by a constraint over 

clock values (sometimes called guard), which indicates 

when the transition can fire, and a set of clocks to be 

reset when the transition fires. Each clock keeps track of 

the time elapsed since the last reset, and can be reset 

independently from the other clocks. The transitions of 

the automaton put certain constraints on the clock 

values: a transition may be taken only if the current 

values of the clocks satisfy the associated constraints. 

Each location is constrained by an invariant, which 

restricts the possible values of the clocks for being in 

the state, which can then enforce a transition to be 

taken). We recall some notions from [2].  

 

The agent specification is completed with the possibility 

to declare integrity constraints. Integrity constraints 

allow to rule parameter values. They are evaluated at the 

beginning of the agent evaluation and after the automata 

evaluation.  
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AN APPLICATIVE EXAMPLE 

In this section an applicative example is sketched to 

show the expressive ability of the automata model, and 

how the methodology can solve a decision problem. The 

solution will be found taking into account local (node) 

and global (microgrid) strategies and ensuring the 

selection of the best one. 

The smart grid application domain 

The study case considered is a real rural medium 

voltage (20 kV) network connected to the distribution 

network. The network, shown in Figure 2, is composed 

of 32 MV nodes, distributed along two radial feeders, 

each of them about 25 km long. Some of the loads are 

connected to medium voltage nodes and some to low 

voltage nodes, and are classified in 5 classes (industrial, 

agricultural, residential, tertiary, public lighting), for 13 

MW as a whole. There are 8 distributed generators 

(3 gas turbines, 3 wind turbines, 2 photovoltaics), each 

of them capable of about 5 MW of active power. 

Both loads and generators are associated to hourly 

profiles of consumption and production, so the entire 

network can be studied in different working points. In 

this study case the 7 a.m. working point has been 

chosen: this situation is characterized by low load and 

high generation, leading to overvoltage issues. In this 

context, a particularly hard event has been introduced: 

the sudden disconnection of two loads (C03 and C18 

highlighted in Figure 2 with orange triangles) of feeder 

A, losing about 2.5 MW in total. This event leads to an 

instantaneous 2% voltage increase in some nodes of the 

network close to the occurrence of the events. Actually, 

if during the outage the voltage value does not remain 

within a fixed range (±10%) the strategy must be 

defined and applied within 5 sec. The time constraint is 

devoted to avoid the intervention of generator 

protections which disconnects the generator from the 

grid within this time interval. 

Formalization of a study of case 

The microgrid supervisor agent is defined at the top of 

the hierarchy. At a lower level there are the two feeders: 

feeder A and feeder B. In order to develop better 

strategies between the feeder level and the node level, 

the section level has been introduced. The section level 

gathers a subset of the nodes, belonging to the same 

feeder, which are geographically near. At last, the node 

level represents the bottom of the hierarchy and the 

interface of the control system with the real electrical 

components. 

The whole set of agents representing the microgrid 

control system is hierarchically linked as shown in 

Errore. L'origine riferimento non è stata trovata.. 

The role of microgrid supervisor is to gather the 

information/decision coming from the lower levels and 

verify, when a fault occurs, whether the local strategies, 

taken at section or feeder levels, are optimal or there is 

the need to compute a new equilibrium point in order to 

recover the network operation. This analysis is carried 

on at the end of the upward evaluation. In the former 

case it enables lower level agents to perform the 

decisions in the downward evaluation. In the latter case, 

it denies the lower level agents to proceed to apply 

decisions. Supervisor agent starts the computation of a 

new operation point for generation and load. This can 

require more than one evaluation cycle, but must be 

carried out within 5 seconds. Once Supervisor has found 

the solution, communicates to lower level agents the 

decisions to be executed. 

 

In the following a sketch of the agent specifications is 

given providing a view of the associated automata. 

Automata specification will be expressed by means of a 

graphical language: circles denote automata states, 

edges denote transitions, labels on edges represent 

transition specification. Double line circle denote the 

initial state and blue circles denote final states. Boxes 

with round corners denote macro states, that is a 

synthetic view of a number of state and transitions. We 

adopted macro state as a syntactic sugar in order to 

detail the specification elsewhere without losing the 

essential logic. 

 

Node agent 
The Node_controller agent is the lowest controller in the 

system hierarchy, a sketch of the associated automaton 

is proposed in Figure 4. The initial state is the S1 

normal_operation. In this state it checks whether a 

load_disconnection event has occurred. In this case, the 

total amount of load loss is computed, scanning each 

connected load, and then, in a similar way, it computes 

the total reduction margin of connected generation. If 

the load loss can be locally compensated with a 

generation reduction, the agent reaches the S2 state 

able_to_reduce_power, otherwise it reaches the S3 state 

unable_to_reduce_power. Transition A is enabled by the 

section connected agent in order to locally recover the 

generation reduction. The node agent proceeds to lower 

the generation level. At each cycle if no load 

disconnection has occurred the transition B of the agent 

computes the generation reduction margin. This data 

can be useful in case this agent is involved in a 

generation reduction when a load disconnection occurs 

somewhere else in the network. At the end of the 

computation it returns to the S1 state normal_operation with 

the transition C.  
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Figure 4 - Node controller agent automaton 

Section agent 
The automaton associated to the section agent is 

sketched in Figure 5, the initial state is the S1 

normal_operation. In S1 agent checks whether at least one 

connected node controller has communicated a load_ 

disconnection event. If it is the case it counts the number 

of nodes having a load disconnection, how many of 

them are in able_to_reduce_power state and how many are 

in unable_to_reduce_power state, and finally how much 

generation reduction margin comes from nodes in 

normal_operation state. If every node with a load 

disconnection is in able_to_reduce_power, or if the number 

of unable_to_reduce_power nodes is lower or equal then 2 

and they can be compensated by a reduction in other 

nodes, the section reaches state S3 able_to_reduce_gen. If 

the number of unable_to_reduce_power nodes is lower or 

equal than 2 and they cannot be compensated by a 

reduction in other nodes, the section reaches state S4 

find_recovery_section. If the number of nodes with load 

disconnections is greater than 2, the section agent 

reaches S2 new_balance state. Finally, if no load_ 

disconnection event has been received, the agent computes 

the generation reduction margin of all the connected 

nodes find_oprating_nodes and moves back to S1 

normal_operation state. 

 
Figure 5 - Section agent automaton 

Feeder agent 
The automaton associated to the feeder agent is 

sketched in Figure 6. In S1 normal_operation feeder checks 

for a load_disconnection event incoming from the 

connected sections. If it is the case, it verifies if every 

section with a load disconnection is in able_to_reduce_gen 

state, the feeder reaches S2 able_to_reduce_gen state. If 

there’s at least one faulty section in find_recovery_section, 

feeder checks if there are sections which can recover the 

generation excess. If this is the case feeder reaches the 

S2 able_to_reduce_gen state, otherwise it reaches S3 

new_balance state, sending a request to the supervisor to 

compute a new grid balance. Feeder moves to the state 

S3 new_balance state anyway if the number of load 

disconnections is greater than 2. 

 
Figure 6 - Feeder agent automaton 

Microgrid supervisor agent 
The automaton associated to the supervisor agent is 

sketched in Figure 7. The initial state S1 normal_operation, 

checks for a load_disconnection event incoming from the 

connected feeder agents. If it is the case and every 

feeder with a load disconnection is in able_to_reduce_gen 

state, and the total number of faults is not greater then 2, 

the agent reaches S3 local_recovery state, that enables the 

local actions in each underlying agent. Otherwise, the 

state S2 new_balance is reached: this state implies an 

optimal power flow calculation to get a new equilibrium 

in the whole microgrid. 

 
Figure 7 - Supervisor agent automaton 

VERIFICATION AND VALIDATION  

The AAETI abilities to verify and validate control 

system specification are supported by an environment 

including these components: 

• an XML interface to express the specification 

by means of a set of agent classes, to define 

general functionality, and a set of agent 
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instances that represent a specific component; 

• an automatic translator to transform a 

specification in an executable code; 

• an inference engine to execute the program 

couple with an electric grid simulator via data 

exchanging; 

Translation of an AAETI specification 

A specification is automatically translated to obtain an 

executable code from the specification. The translation 

is defined according to a set of specific rules, that put 

into correspondence each agent construct with a specific 

object or method of an object oriented programming 

(OOP) environment, exploiting the structural induction 

on the components of the agents. In particular, the OOP 

notions of object, attribute and method have been put 

into correspondence, respectively, with the AAETI 

agent, attribute and behaviour description.  

Multi-agent inference engine 

The AAETI inference engine manages the cyclic 

evaluation of a control system specification by means of 

a scheduling list of the agents, and provides a number of 

library functions to support the evaluation of each agent 

for the current cycle. 

The scheduling list order agents first according to the 

upward hierarchy and then according to the downward 

hierarchy. 

For each evaluation cycle, each agent is selected from 

the scheduling list, according to the order, and then it is 

executed. The agent execution consists of: 

• evaluating each attribute definition in order to 

update the attribute value; 

• evaluating the set of specified rules. 

The agent upward evaluation policy ensures that, once 

the low hierarchy level agents acquire the controlled  

system status, the higher level agents are able to plan 

and actuate the best strategy. However, the policy to 

evaluate agents can be modified just revising the access 

to the scheduling list. As an example, we are currently 

studying the effects of an upward-downward policy on 

the agents abilities. Indeed, this policy allows both: to 

gather the power system status (upward evaluation) and 

to collect the set of plans defined by the coarser level 

agents (downward evaluation) in order to optimize the 

actions to be performed. 

The inference engine just depicted is mainly tailored on 

the verification and validation of the defense plan, 

rather than the deployment of the control system on the 

microgrid. The AAETI execution abilities presented so 

far are centered on the specification. The deployment of 

the control system on a real power system will be the 

subject of a next research activity. 

Validation of a specification 

The validation of a defense plan has the role to measure 

the ability of a set of actions to prevent blackout of a 

power system in a specified status. In particular, the 

main aim of this phase is to test whether the defense 

plan is able to: 

• recognize the event, or the network status, that 

can lead to the complete blackout; 

• plan and apply suitable actions in order to 

confine, as far as possible, criticalities; 

• allow the fast restoration of the faulted power 

system components with respect to different 

power system configurations.  

CONCLUSIONS 

The paper proposed the AAETI methodology to test the 

specification and design of automation and control 

systems for microgrids. The specification of a load 

shedding has been proposed in order to show the 

AAETI ability. AAETI can be thought as a general 

platform to host different microgrid control 

architectures, such as centralized or distributed 

architectures. Currently we are taking into account the 

possibility to build on AAETI the automation and 

control architecture for smart grids, studying also the 

agent communication issue not considered till now. 

REFERENCES 

[1] Model-checking in dense real-time, R. Alur, C. 

Courcoubetis, D.L. Dill, Information and 

Computation 104(1):2-34, 1993; 

[2] A theory of timed automata, R. Alur,  D.L. Dill, 

Theoretical Computer Science 126:183-235, 1994; 

[3]  Automata Agents Extended with Time Constraints to 

deal with Smart Grid Control System Specification 

and Validation, E. Corsetti, G. A. Guaglairdi, C. 

Sandroni, submitted for the revision to Journal of 

Software and System Modeling, for the special issue 

of Integrated Formal Methods, 2014; 

[4] Advanced Control Architectures for Intelligent 

MicroGrids – Part I: Decentralized and 

Hierarchical Control, J.M Guerrero, M. 

Chandorkar, T. Lin Lee, P. C. Loh, IEEE Trans. on 

Industrial Electronics, vol. 60, n.4, pp 1254-1262, 

April 2013; 

[5] Microgrids and Active Distribution Networks, S. 

Chowdhury, S.P. Chowdhury and P. Crossley, 

Published by The Institution of Engineering and 

Technology, London, United Kingdom, 2009;  

[6] Simulation of high-voltage Substations on Parallel 

Architectures, Botti O., Cesana M. Corsetti E., 

Proceedings of the International Conference 

HPCN96 - High Performance Computing and 

Networking - Brussels, April 96. 

 


