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ABSTRACT

In this work, a review of univariate time seriesdals

for the long term modeling of wind speed is perfeam
These models intend to help the distribution system
operators to account for the stochastic nature afdw
during the network planning phase. Two groups of
criteria are proposed for comparing the performarmte
the models. The first one is focused on the
representativeness (i.e. the ability of the model t
reproduce the statistical properties of the realtaja
whereas the second one is linked to computational
issues, such as the size of the historical databkéth is
needed to obtain a given level of representativenes
the computational burden associated to the training
procedure.

INTRODUCTION

The increasing penetration of wind power has raised
new challenges concerning the operation and thg lon
term planning of distribution grids. Indeed, the
stochastic nature of wind production significantly
complicates the formulation and the resolution tod t
underlying optimization problem (see.g. [1] for a
recent formulation of the day-ahead operational
management of distribution networks, and [2] foe th
long term planning). In the case of distributioriwark
planning more precisely, the system operator
particularly interested in obtaining future trafies of
wind speed €.g. for the upcoming year) at different
wind sites. Indeed, this information is crucial fibve
determination of optimal investment plans (after a
transformation in the power domaie,g. using power
curve functions).

is

Time series models are powerful solutions for that
purpose. They permit to generate synthetic wind dat
which mimic the statistical properties of real

measurements. Moreover, they can be stored in a
compact form, as they are usually represented by
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mathematical formulae with a small number of
parameters. There is therefore no need to embed the
entire historical dataset in the optimization tdof
sampling.

Over the past years, the literature has been abtioda
the topic of long term time series modeling of wind
speed. References [3-4] are for instance focusetthen
use of AutoRegressive Moving Average (ARMA)
models, whereas in [5], the authors propose a rdetho
based on an ARMA-GARCH approach (with GARCH
standing for Generalized AutoRegressive Conditibnna
Heteroscedasticity). A recent contribution [6]
investigates the class of AutoRegressive Integrated
Moving Average models (ARIMA). Several attempts
articulated around the ARMA family can also be
noticed, namely the ARMA-GARCH-in-Mean model
[7], and Fractional ARMA models [8]. The list ismo
exhaustive, but the section “Models” will give aalked
description of some of the most significant apphesc

Nevertheless, to the best of the authors’ knowledge
comparative study has been published so far. Thrk w
intends therefore to provide an objective compariso
between the available approaches, by testing them o
the same dataset. A particular attention will bl ga

the definition of two groups of comparison criteria
focused on the representativeness of the modehen t
one hand, and on computational issues on the other
hand. The most significant contributions will be
described in section “Models”, and tested on a comm
dataset, obtained from the Royal Netherlands
Meteorological Institute (KNMI [9]), in section
“Comparative study”. The issue of the preprocessihg
the raw dataife. the treatment to apply to wind speed
data before using it in a time series mathematical
model) will also be discussed.

This contribution is focused on time series modailly:
other approaches, making use of Artificial Neural
Networks [10] or Markov chains [11] for instancee a
available in the literature. These will be testedtlie
future, as it will be discussed in section “Conalus
and Perspectives”.
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MODELS innovations{e,}, is written as follows [16]:
Data pre-processing | &2 = z,0,, 2,~D(0,1), 3)
The ARMA and ARMA-GARCH classes require to
work on weak-sense stationary processesstochastic where the conditional variane reads:
processes for which the mean is constant over tinge,
variance is finite at each timg and for which the 02 =g+ X% a0l + X0 Bel, (4)

covariance function is independent of the time[].

In practice, collected wind speed data does nafyer
these properties: it naturally shows seasonal npatte
(day/night cycles, seasons), and may contain adtren
Therefore, a pre-processing must be applied taahe
data in order to remove such effects. Two appraache
are implemented and compared in this paper.

Centralization-reduction [3]
An elegant procedure, based on a centralization-
reduction operation, is proposed in [3]. The ideda
work on a standardized versiofy of the initial wind
speed time seriedV;, obtained using the following
equations:

Xe =Wy — /oy, (1)
with Y, and g, respectively the mean and the standard
deviation of observed wind speed at time

Inversion of Cumulative Distribution Functions[12]

In that case, the standardized time seXiesre obtained
by following three steps:
1. Compute the cumulative distribution functions
(cdfs) of observed wind speed at each time
2. Transform each observed wind speed
uniformity using the computed cdfs.
3. Transform the uniformly distributed data to
normality, using the inverse cdf of a normal
with zero mean and unit variance.

ARMA

A zero mean ARMA processx{} of order (p,q) can be
defined as follows [13]:

to

X, = ZZ:l Qe Xe_p + &+ 27:1 0i&_; (2
with {e} the process of innovations (a gaussian white
noiseN(0, o) of variances?), and witha, and 6, non
zero constants. In this work, the AR orgeand MA
order q are estimated using the Bayesian Information
Criterion (BIC) [14], knowing that any stationary
process can be approximated as closely as reghired
an ARMA(nh,n-1) model [15]. Then, the coefficients
a.f; and g? are computed using a conditional MLE
(Maximum Likelihood Estimation) procedure [13].

ARMA-GARCH

An ARMA(p,q)-GARCH(@,b) model consists in an
ARMA(p,q) process for which the process of
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with ¢« and p positive coefficients andz the
standardized residuals (independent and identically
distributed). Their probability density function B
(with zero mean and unit variance), which may be
normal or Student-T. Such a model allows to take in
account a temporal variability in terms of variance
coming from the past evolution of the processs Ifor
instance well suited for the representation of eseri
which tend to group the variability into clusteliss.
which separates periods of high and low variability
Again, in this work, the optimal orders of the ARMA
GARCH model are estimated using the BIC, and the
coefficients are computed using the MLE approach.

ARIMA

In the “Data pre-processing” subsection, two proces
have been exposed for ensuring that the time sarees
stationary. Another typical solution consists irpkmg
multiple numerical differentiations to the time issr
This is the approach retained for ARIMA and Seakona
ARIMA (SARIMA) models [6]. These are ARMA
models for which the series have been subject to
differentiations of appropriate orders so as toaesn
trend and seasonality effects. However, in thiskwtire
simplicity of implementation of [3] and [12] has ére
favoured against that class of models.

COMPARATIVE ANALYSIS

Two groups of comparison criteria are proposedkelh

to the notion of representativeness of a modeherohe
hand, and on computational issues on the other.hand
They are tested on wind speed data from the Schipho
wind site, in the Netherlands [9]. The data hasnbee
collected on an hourly basis, for 54 years (betwidsi

and 2005), and has been classified month by manth i
order to take seasonal effects into account.

In the “Representativeness” subsection, the whelet
54 years has been employed for the data pre-piogess
(centralization-reduction method of [3], or inversdfs
method of [12]). In the case of June for instante,
means that th@, ands, are computed at each hour of
the month, basing on 54 months of data. On therothe
hand, three years of data (namely June 2003, 2084 a
2005) has been employed for estimating the paramete
of the ARMA and ARMA-GARCH models. The size of
the database will vary in the “Computational isSues
subsection, as it will be discussed.
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Repr esentativeness

The ARMA and ARMA-GARCH models obtained
using the inverse cdfs and centralization-reduction
methods are listed in Table 1 and 2 respectivelytHe
dataset exposed above (June, Gaussian innovations).
The estimated models are nearly identical, fortthe

data pre-processing methods. The reason for chgposin
one of the two approaches is linked with compuretio
issues, as it will be discussed in the next section

Table 1: parameters of ARMA and ARMA-GARCH
models (three years database), using inverse cdfs
method (54 years database), for June.

o1 02 Hl O'tz
ARMAQ.D) | L.14] -023] -0.51 0.35
ARMA(2,1)- ] ] 0.043 + 0.6307,
GARCH(1,1) | T11| 021 042 [oo6e2

Table 2: parameters of ARMA and ARMA-GARCH
models (three years database), using centralization
reduction method (54 years database), for June.

o1 0o Hl O'tz
ARMA(2,1) 1.16| -0.24 -0.5 0.34
ARMA(2,1)- ] ] 0.042 + 0.6307,
GARCH(1,1)| 11| 02| 037 o262,

The purpose of the models is to generate future
trajectories of the wind speed at a given stg,for the
upcoming year, which are representative of the Wieha

of the measured speed. This first category of riaites
devoted to the verification of the correspondence
between the statistical properties of real and kitaed
data. Discussions with system planners lead to the
definiton of three indicators regarding the
representativeness, which are exposed below.

Energy criterion

The first criterion is focused on the energy cohtei

the simulated time series. This can be analyzed by
plotting the histograms of simulated and observattiw
speeds for a given month (June in our case). Fifure
shows for instance such histograms for real obskerve
data (blue and black curves), as well as the 95%
confidence bounds of simulated data using the ARMA
(red curves) and ARMA-GARCH (green curves)
models. It can be observed that the 95% confidence
bounds of the two models encompass the observed
histograms. Moreover, their performance is similar
regarding the energy criterion.

Autocorrelation criterion

The autocorrelation function of the simulated serie
must reproduce faithfully the temporal correlatadrthe
measured data. Figure 2 depicts the autocorrelptain

of observed (blue curves) and simulated data (vedes

for ARMA and green curves for ARMA-GARCH), for
June. Again, the performance of the two models is
similar, even if the ARMA-GARCH seems to behave
slightly better for high lags.
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Variability criterion
The energy criterion evaluates the ability of thedel
to simulate data which mimics the mean behavior of
real wind speed. However, no information is given
regarding the wind speed variations between suiseess
hours (sign and amplitude), which need to be ctlyrec
reproduced during the system planning phase.
Therefore, a third criterion has been proposedchvhi
consists in comparing the distributions of wind exgpe
variations between real and simulated data. Figure
shows for instance such distributions for the maoith
June, the black lines corresponding to observed, dlae
red (green) ones to the 95% confidence bounds of
simulated data using the ARMA (ARMA-GARCH)
model. It can be seen that the two models captale w
the variability of the real data, excepted for vergall
variations é.g. 1m/s). The ARMA-GARCH model
performs however slightly better than the ARMA in
these conditions.
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Fig.1: histograms of observed data for June (blue and
black curves), and 95% confidence bounds of siradlat
data (red curves for ARMA and green curves for
ARMA-GARCH).
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Fig.2: autocorrelation plots of observed (blue curves)

and simulated data (red curves for ARMA and green

curves for ARMA-GARCH), for June.
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Fig.3: distribution of the wind speed variations for
observed data (in black), and 95% confidence bounds
for simulated data (ARMA in red and ARMA-GARCH

in green).
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Based on the three representativeness criteriod, an
provided that the size of the database is largee(bé
years of wind data for the pre-processing, andethre
years for model estimation), no significant diffeces
appear between the ARMA and ARMA-GARCH class
of models (even if the variability of real datecaptured

by the ARMA-GARCH family slightly better).

Computational issues

Size of the dataset

The influence of the size of the database on the
representativeness performance of the modelsdgestu

A first analysis has been conducted by reducing the

The issue of generating synthetic data may be timoe
consuming. It is really fast in the case of the
centralization-reduction pre-processing (less tharof
CPU time for generating 100 series, including de-
standardization). However, the inverse cdfs appgroac
has logically required a CPU time of 133s in ouseza
for the same number of series, since it implies to
construct the cdfs as well as their inverse. Thiy fne
problematic within the framework of a system planni
software, for which a lot of synthetic series néede
produced in a Monte Carlo framework, for a lot of
different wind sites. Moreover, the latter approach
requires to store the cdfs in the tool, which isreno

amount of data used during the preprocessing phase memory consuming than storing the scalarandg; of

(from 54 years to 3 years), keeping a fixed amafnt
three years of data for the estimation of the tiserses
models. The main conclusion was that the
representativeness of the models was good, even wit
the reduced set of 3 years.

However, further comments need to be made when only
one year of data is available. In that caseando; for

the centralization-reduction method [3] (or the ithpu
cdfs for the method of [12]) must be computed for a
typical day of the studied month. Indeed, it is not
possible to calculate them for each hour of the thnon
because of the reduced amount of available data. Tw
ARMA-GARCH models have been estimated, starting
from the data collected in June 2005 only, for the
centralization-reduction procedure (ARMA(3,2)-
GARCH(2,1)) and for the inverse cdfs method
(ARMA(1,1)-GARCH(1,1)). Figures 4, 5 and 6
compare the performances of the two models regardin
the three representativeness criteria. It can ba Heat
the model based on inverse cdfs performs betterttha
other, especially for the energy and variabilititesia.
This is an important result when a reduced amodint o
data is at hand (typically one year). Results forpse
ARMA models are not presented here, since theyato n
bring anything new to the discussion

Computational burden

The two main steps which influence the overall
computational burden are the time needed to estimat
the models on the one hand, and the time requoed f
simulating synthetic data once the model is known o
the other hand, including the de-standardization
procedure.

Regardless of the type of model (ARMA or ARMA-
GARCH), the whole estimation procedure last around
60s of CPU time for three years of data, for a give

the centralization-reduction method.
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Fig.4: energy criterion, database of June 2005 only. In
blue are depicted observations for years 1980, 1991
2005, in red (green) the 95% confidence boundsidta
simulated by the ARMA-GARCH model with the
centralization-reduction (inverse cdfs) method.
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Fig.5: autocorrelation criterion, database of June 2005
only.
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Fig.6: variability criterion, database of June 2005 only

month (three years appeared as an optimal trade-off CONCLUSIONSAND PERSPECTIVES

between representativeness and the computational various time series models (mainly ARMA [3] and

burden linked to the estimation phase). This is aot
constraint since that procedure is performed omlg o
time, at the construction of the model.
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ARMA-GARCH [5]) have been reviewed for the
generation of synthetic wind speed data in the
framework of distribution network planning, with an
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emphasis on the pre-processing which has to beealppl
on the raw data before fitting the models (cergedion-
reduction method of [3] and inverse cdfs transfdioma
of [12]). Two class of comparison criteria have ee
proposed, linked to the notion of representativerdsa
model on the one hand, and on computational issnes
the other hand.

It has been shown that the performance of the ARMA
and ARMA-GARCH models were quite similar
regarding the representativity as well as the
computational burden (even if the ARMA-GARCH
class captures the variability of the observed wiata
slightly better, at the expense of a slightly highe
computational burden during the estimation phase).

A critical study has been conducted on the siz¢hef
training datasets. It has been shown that
representativeness of the models remain acceptable
if only a few years of data are available. On tligen
hand, when only one year is at hand, a time sereel
based on the inverse cdfs transform performs
significantly better. Unfortunately, the CPU time
required for the generation of synthetic data draly
increases in that case. Therefore, the choice ef th
method will depend on the available data. If theasket
contains a few years or more, the centralization-
reduction method prevails as it is fast and lig¥tereas
the inverse cdfs approach may be employed for small
dataset for a better representativeness.

the

The literature is very abundant on the topic ofistiaal
modelling of wind data. This work is a first atteimp
clarify the problem among the power electrical
engineers community. It will be completed in thaufe,
with the objective to propose an exhaustive stétibe>
art in the field of long term wind speed modellifuse

of Artificial Neural Networks, Markov chains, Kalma
filters, etc.).

The important issues of geographical correlatiowl, of
the generation of synthetic series in the presenfce
incomplete data (missing samples, etc.) will alsechto
be investigated. The set of proposed comparisaerizri
will be extended, as soon as these aspects wikhen
into account in the study.
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