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ABSTRACT 

Higher penetration of small distributed energy resources 

will impact the low voltage network. As a consequence, 

better knowledge of real-time operating states of a 

distribution network is required. The use of an iteratively 

reweighted least squares state estimation method with 

real-time and pseudo-measurements obtained from a 

low-voltage microgrid is investigated. Simulation results 

for different types of measurements, different 

measurement configurations, and different time 

resolutions are reported. Simulation results show that the 

state estimator can be used effectively to extend the 

observability of the low voltage microgrid and provide 

reliable state estimates using different sets of 

measurements. 

INTRODUCTION 

Higher penetration of small-scale distributed generation 
is anticipated in many countries. As more generators are 
connected to distribution networks at the lower voltage 
levels, operational difficulties can arise. Therefore, better 
knowledge of real-time operating states of a distribution 
network is required. The lack of sensors and 
communication systems renders real-time monitoring 
and control of low voltage (LV) networks very limited 
and difficult. LV networks are under-determined systems 
with an inadequate number of real-time measurements to 
make the networks fully observable. Installing real-time 
measurements at all network nodes is impossible due to 
economic limitations. In the presence of a minimum set 
of real-time measurements, state estimation is used to 
extend the observability and to identify the operating 
states of a distribution network [1]‒[4]. 
State estimation is defined as the computation of the 
minimum set of necessary values to try describe 
completely all other pertinent variables in a given system 
from some measurement data [5]. As a mathematical 
tool, state estimation acts as a noise filter to reduce the 
negative impact of errors in data. In the context of power 
systems, the state estimator acts as a filter between the 
raw measurements (e.g. voltage magnitude, 
active/reactive power injections, and active/reactive 
power flows) received from the system and all 
application functions that require the most reliable 
database for the current state of the system. In this sense, 
the state estimator minimises the error between real-time 
measurements and the calculated values of these 
measurements [3], [6], [7]. 
Distribution networks will become more meshed as 
larger numbers of distributed generators are connected. 

Hence, the use of state estimation methods that have been 
specially designed for radial networks would not be 
possible [2]. A state estimation algorithm based on the 
Iteratively Re-Weighted Least Squares (IRWLS) state 
estimation method used in transmission networks is 
presented. The performance of the IRWLS is evaluated 
with real-time measurements and pseudo-measurements 
obtained from a practical test system represented by the 
Distributed Energy Resources Test Facility (DER-TF) in 
Ricerca sul Sistema Energetico (RSE) in Italy. Different 
configurations of measurement devices and different 
time resolutions were used to assess the performance of 
the IRWLS state estimator with regard to the provision 
of reliable state estimates. 

DISTRIBUTION NETWORK STATE 

ESTIMATION 

Distribution network state estimation is generally based 
on the classical transmission system state estimation. 
Weighted Least Squares (WLS) algorithms are used to 
solve the state estimation problem [6]. The WLS 
minimizes the sum of weighted squared residuals 
between the measured and estimated values as given by 
(1) subject to the constraints imposed by the 
measurement equations in (2) 

min (𝒛 − 𝒉(𝒙))𝑇𝑾̅̅̅(𝒛 − 𝒉(𝒙))                                    (1) 

subject to 𝒓 = 𝒛 − 𝒉(𝒙)                                               (2) 

where 𝒛 is the measurements vector, 𝒙 is the system state 
vector (voltage magnitude and voltage phase angle at 
different nodes of the network), 𝒉(𝒙) is the vector of non-
linear functions relating measurements to system state 
variables, 𝒓 is the measurement residual vector, and 𝑾̅̅̅ is 
the weight matrix. 
The weight matrix is a diagonal matrix where the weights 
of measurements are in the main diagonal. The weight 
assigned to each measurement reflects its accuracy. The 
accuracy of a measurement is expressed in terms of its 
variance (𝜎2). Hence, the reciprocals of measurement 
variances (1 𝜎2⁄ ) are used as weights so that the final 
solution of the state estimator will be less impacted upon 
by measurements with higher variance than by 
measurements with lower variance. 
In distribution networks, limited real-time measurements 
necessitate the use of pseudo-measurements in 
conjunction with the state estimator. Pseudo-
measurements usually contain larger errors than real-time 
measurements. Real-time measurements are also 
susceptible to gross errors due to noises inherent in the 
power system and failure of measurement and 
communication devices. Structure of the measurement 
equations, location of the metering devices and network 
parameters are all factors that may lead to the creation of 
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leverage points which are able to reduce the accuracy of 
the estimates. Generally, IRWLS algorithms are 
considered more robust than the WLS algorithms [8]‒
[11]. An IRWLS state estimator is used in this study. In 
IRWLS algorithms, 𝑾̅̅̅ includes functions that calculate 
measurement residuals at each iteration of state 
estimation. As a result, measurements are reweighted 
iteratively depending on the values of their residuals. 
In the current study, voltage magnitude (𝑉𝑖) and voltage 
phase angle (𝜃𝑖) at each node (𝑖) of the network1 are taken 

as state variables. Therefore 𝒙 =  [
𝑽
𝜽

]. 

The set of measurements available for this study 
comprises active/reactive power injection measurements 
(𝑃𝑖 , 𝑄𝑖) and voltage magnitude measurement 𝑉𝑖 at each 
node (𝑖) of the network, and active/reactive branch power 
flow measurements (𝑃𝐹𝑖𝑗 , 𝑄𝐹𝑖𝑗) between nodes 𝑖 and 𝑗 of 

the network. Therefore 𝒛𝑇 =  [𝑷 𝑸 𝑷𝑭 𝑸𝑭 𝑽 ]. 
For a network with a number of 𝑁 nodes, the power flow 
measurements are represented as  

𝑃𝐹𝑖𝑗 =  𝑔𝑖𝑗𝑉𝑖
2 − 𝑉𝑖𝑉𝑗𝑔𝑖𝑗 cos 𝜃𝑖𝑗 − 𝑉𝑖𝑉𝑗𝑏𝑖𝑗 sin 𝜃𝑖𝑗           (3) 

𝑄𝐹𝑖𝑗 =  −𝑏𝑖𝑗𝑉𝑖
2 − 𝑉𝑖𝑉𝑗𝑔𝑖𝑗 sin 𝜃𝑖𝑗 + 𝑉𝑖𝑉𝑗𝑏𝑖𝑗 cos 𝜃𝑖𝑗      (4) 

where 𝑔𝑖𝑗 and 𝑏𝑖𝑗  are the conductance and susceptance of 

the branch connecting nodes 𝑖 and 𝑗 of the network 
respectively [6]. The active/reactive power injections at 
each node (𝑖) of the network are 

𝑃𝑖 =  ∑ 𝑃𝐹𝑖𝑗
𝑁
𝑗=1                                                                       (5) 

𝑄𝑖 =  ∑ 𝑄𝐹𝑖𝑗
𝑁
𝑗=1                                                    (6) 

In eqns. (3) through (6), 𝑗 = 1, 2, … , 𝑁 and 𝑗 ≠ 𝑖 [9]. 
The vector 𝒉(𝒙) of non-linear equations comprises the 
partial derivatives of measurement functions with respect 
to state variables (voltage magnitude and voltage phase 
angle). 

TEST MICROGRID 

The Distributed Energy Resources Test Facility (DER-
TF) is a three-phase LV Microgrid [13] consisting of 
several generators with different technologies (renewable 
and conventional), controllable loads and storage 
systems. The single line diagram of the DER-TF network 
configuration is shown in Fig.1. The microgrid is 
connected to the distribution grid through a 23kV/0.4kV 
transformer. In Fig. 1, Bus 1 is the grid connection point. 
The measurement interface –Bus 2– is the network node 
where real-time measurements of voltage magnitude, 
power injections and power flows are obtained. Several 
tests with different network configurations have been 
carried out. The main aims of these tests were to validate 
the performance of the state estimator in a practical LV 
network and to investigate the impact of both 
measurement configurations and time granularity on the 
output of the state estimator. 

                                                           

1 Except voltage phase angle at the grid connection point 

(Bus 1) 

 
Fig. 1. Single line diagram of the DER-TF 

The distributed energy resources available for the test 
were a photovoltaic (PV) field, a Zebra battery storage 
system, a Gas Combined Heat and Power (CHP) micro 
turbine, a Lithium battery storage system, and a 
programmable resistive and inductive load. 

SITE TEST AND SIMULATION RESULTS 

Taking into consideration both network topology and 
available distributed energy resources connections, 
different measurement configurations were used to 
validate the performance of the state estimator. Initially, 
the state estimator was run with a measurements set 
comprising real-time voltage magnitudes, active/reactive 
power injections, and active/reactive branch power 
flows. Real-time voltage measurements, active/reactive 
branch power flows and active/reactive power injections 
were separately input to the IRWLS in order to assess the 
impact of different types of measurements on state 
estimates. The influence of changing measurements’ 
time resolution on state estimates was also simulated. 
The network configuration used for testing state 
estimator performance is depicted in Fig. 1. 
Measurements were acquired at 2 seconds rate and saved 
at 10 seconds rate (10 seconds average values) in binary 
form. In order to make measurements accessible and 
readable by spreadsheet software (like Microsoft Excel) 
or other programs (e.g. IRWLS state estimator), RSE 
developed a software platform that was used to extract 
the measurements and save them in text mode. This 
software platform is able to calculate the average values 
of measurements based on user defined periods. The data 
extracted from this software is used as an input to the 
state estimator. 
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Simulation results considering an over-

determined system of real-time measurements 

At first, a set of real-time measurements comprising 
voltage magnitude and power injections at Bus 2 
(Measurements interface) and Bus 3 (Load Bus); and 
branch power flows at all feeders of the network was 
input to the state estimator. Voltage magnitudes at Bus 1 
through Bus 7 and voltage phase angles at Bus 2 through 
Bus 7 represent the output of the state estimator. The set 
of measurements at the infeed of Bus 2 was used to 
calculate the voltage magnitude and active/reactive 
power injections at Bus 1 (the grid connection point – 
GCP) because of the non-availability of real-time 
measurements at that bus (the same procedure has been 
applied to Bus 4 through Bus 7). A comparison between 
the estimated voltage and the calculated voltage at Bus 1 
is shown in Fig. 2. It is clear that the state estimator 
provided reliable estimates of the voltage magnitude 
even when there was a gross error in the real-time 
measured voltage at infeed of Bus 2 (where measured 
voltage was 246.374 volts at around 12:09pm). 

 
Fig. 2. Comparison of Bus 1 (GCP) voltages using 10-

seconds interval 

The presence of a large number of gross errors within 
measurements is known to disable conventional WLS 
state estimators [4],[9]. However, results showed that 
even under such a condition of extreme gross errors, the 
IRWLS state estimator still provided reliable results of 
network states. Fig. 3 presents a comparison between the 
measured and the estimated Bus 3 voltages using a 10-
second interval. The results depicted in Fig. 3 show a 
clear offset between the estimated and the measured 
voltages. This offset indicated a possibility of bias and 
inherent offset within Bus 3 measurement devices. An 
investigation test was carried out under no-load 
conditions to compare the voltages at Bus 2 and Bus 3. 
The no-load test confirmed that the measurement devices 
at Bus 3 contained an offset of less than 1 volt. A 
recommendation was made to update the measurement 
devices at Bus 3. This investigation demonstrates the 
effectiveness of the IRWLS estimator. 
The output of the state estimator not only includes 
network states in terms of voltage magnitude and voltage 
phase angle at each node in the network, but also includes 
calculated active/reactive power injections at each node 

 
Fig. 3. Comparison of Bus 3 (Load) voltages using 10-

seconds interval 

 
Fig. 4. Comparison of Bus 3 (Load) active powers 

using 10-seconds interval 

 
Fig. 5. Comparison of Bus 3 (Load) active powers 

using 10-seconds interval 

based on the estimated network states. As a result, it is 

possible to compare real-time power injections with 

estimated ones. Fig. 4 shows a comparison between the 

measured and estimated active power injections at Bus 3. 

The real-time measured reactive power injection as 
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compared to the estimated reactive power injection is 

depicted in Fig. 5. 

Impact of real-time voltage measurements 

The impact of voltage measurements on the IRWLS state 
estimator was investigated. An assumption was made that 
real-time voltage measurements exist at Bus 2 and Bus 3. 
Given that power injections and power flows are often 
measured in real-time at distribution network substations, 
power injections at infeed of Bus 2 (representing GCP 
power injections plus power loss along the main feeder) 
and power flows along the main feeder were assumed to 
exist in real-time. It was also assumed that pseudo-
measurements represent power injections at all network 
nodes other than the infeed of Bus 2 and that no power 
flow measurements elsewhere exist. Results show that 
the loss of both real-time power flow measurements and 
real-time power injections does not impact the estimated 
voltages. As an example, the calculated versus the 
estimated voltages are depicted in Fig. 6. It is obvious 
that Fig. 6 exactly matches Fig. 2 implying that voltage 
estimates are mainly influenced by the presence of real-
time voltage measurements. 

 
Fig. 6. Bus 1 (GCP) voltages using 10-seconds interval 

with real-time voltage measurements 

Impact of real-time branch power flow 

measurements 

Power flow measurements’ impact on state estimates was 
taken into consideration. The set of real-time 
active/reactive branch power flow measurements along 
all network feeders was made available to the state 
estimator. Real-time voltage and power injection 
measurements at infeed of Bus 2 were also fed to the state 
estimator. At other network nodes, it was assumed that 
no voltage measurements exist and that power injections 
are represented as pseudo-measurements. Fig. 7 
illustrates a comparison between real-time measured and 
estimated voltages at Bus 3. It is obvious that reliable 
voltage estimates were still provided by the state 
estimator even in the presence of a minimum set of real-
time voltage measurements (voltage measurement at 
infeed of Bus 2). However, it is also clear that Bus 3 
voltage estimates were impacted upon by the presence of 
voltage measurement gross error (voltage measurement 
at 12:09pm). This confirms the correlation between real- 

 
Fig. 7. Bus 3 (Load) voltages using 10-seconds interval 

with real-time power flow measurements 

 
Fig. 8. Bus 3 (Load) voltages using 10-seconds interval 

with real-time power injection measurements 

 
time voltage measurements and voltage estimates. 

Impact of real-time power injection 

measurements 

The impact of real-time power injection measurements 
was also studied. Real-time measurement set of power 
injections at Bus 2 and Bus 3, voltage magnitude (at 
infeed of Bus 2) and power flows (along the main feeder) 
were used by the state estimator. A comparison between 
the measured and estimated voltages of the load is shown 
in Fig. 8. It is clearly shown that Bus 3 (Load) voltage 
was reliably estimated. The existence of a gross error in 
real-time measured voltage at the infeed of Bus 2 
emphasizes the fact that the accuracy of voltage 
measurements is the most important factor for accurate 
voltage estimates.  

Impact of time granularity:10-mins.  granularity 

Tests carried out in the previous sections used 
measurements obtained at 10-seconds intervals. The 
performed tests gave a detailed insight into the network 
and how accurate state estimates were obtained in the 
presence of gross errors within different real-time 
measurements and with different types and 
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configurations of the set of measurements available to the 
state estimator. In order to demonstrate the impact of 
changing time granularity on the state estimator 
performance, the 10-minutes average values of 
measurements were retrieved from the RSE software 
platform. The basic assumption of a complete set of real-
time measurements available as state estimator inputs is 
made. Fig. 9 shows a comparison between real-time 
measured and estimated voltage at Bus 3. 

 
Fig. 9. Bus 3 (Load) voltages using 10-minutes interval 

with real-time power flow measurements 

It is clear that the state estimator produces reliable 
outputs even when the average values of measurements 
are obtained at time rates higher than the original 10-
seconds rate. Gross measurements errors were properly 
defined and filtered as shown in Fig. 9. 

CONCLUSIONS 

Real-time measurements obtained from a practical low-
voltage network were used to test and validate the 
performance of an IRWLS state estimator. Different 
measurement types and configurations, and different 
time resolutions were simulated. Reliable output of the 
state estimator in the presence of gross measurements and 
with the utilisation of different types of measurements 
demonstrate the versatility of the IRWLS estimator. The 
results obtained show that the IRWLS state estimator can 
be integrated with distribution networks (both LV and 
MV) to increase network observability and provide real-
time network state in terms of the voltage magnitudes and 
voltage phase angles at all nodes in the network.  
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