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ABSTRACT 
The concept of electrical-mobility is becoming even 
more attracting worldwide and Fast Charging Stations 
(FCSs) will start appearing in the near future directly 
connected to MV networks. Consequently, a correct 
expansion plan of the electric distribution system cannot 
pass over the knowledge or the prediction of the 
consumption of this new load. In the paper, daily 
demand profiles of the FCS, modelled by the authors in 
a previous work, are used in a new planning tool to find 
the optimal allocation of public fast charging stations in 
a given network structure. The tool applies an 
evolutionary Multi-Objective philosophy, based on the 
Non-dominated Sorting Genetic Algorithm-II, in order 
to minimize the negative effects of concentrated and 
intense absorptions of power in the FCSs across the 
distribution network without penalizing their diffusion 
in the urban texture. 

INTRODUCTION 
The global warming problematic and the increasing 
trend and high volatility of the fossil fuels prices are 
leading policy makers to ensure an increase in the 
renewable sources exploitation and to promote, 
simultaneously, the conventional vehicles replacement 
by Electric Vehicles (EVs). However, while their 
integration in moderate quantities does not provoke any 
considerable troubles, their broad adoption would most 
likely create some drawbacks in grids’ operation and 
management, like congestions, low/high voltage issues 
and load imbalances between phases, [1]. These 
problems may become a reality in the next decades 
since, according to the International Energy Agency 
projections, the sales of passenger light-duty EV will 
boost from 2020 on and might reach more than 100 
million of EVs sold per year worldwide by 2050. 
From the grid point of view, key questions are when and 
where drivers will recharge their vehicles. The primary 
source of charging will rely on normal charging boxes, 
located at home or in the parking at work and operated 
manually by the driver or, preferably, remotely 
managed by a suitable control system. In both cases, 3 
kW AC slow chargers will be spread in the LV system 
(home chargers) or concentrated in some parking lots 
and connected to the LV or MV networks. 
Alternatively, fast charge will occur when previous 
charging options are not available or when, in the 
middle of a trip, the battery approaches minimum SoC 

(State of Charge). Fast charging refers to DC charging 
poles with nominal power equal to or higher than 50 
kW. Consequently, a Fast Charging Station (FCS) will 
be characterized by high momentary peak power 
absorptions (multiple poles charging simultaneously) 
and they must be connected to MV networks. 
For those reasons, new tools are needed to assess the 
EV impact on the electric distribution network and to 
correctly plan the expansion of the power system. On 
this topic is mainly focussed the research project 
partially described in this paper. The first step of this 
activity has been a careful definition of a daily profile of 
the power absorbed by a FCS, in order to achieve a 
good knowledge of the behaviour of this new kind of 
load avoiding cost-ineffective network investments 
and/or power quality deterioration. In [2] the authors 
presented a Monte Carlo simulation methodology able 
to consider several aspects that may influence the 
request of fast charge. At the end of this stochastic 
process, a daily load profile is obtained described by an 
expected power absorption and a relative standard 
deviation for each interval. This representation is 
fundamental for the planning process of the future 
Smart Distribution Systems that requires probabilistic 
models for a better representation of the uncertainties in 
the planning data, and the introduction of the risk 
concept in the selection of planning solutions [3]. 
In the paper, this representation is used by a new 
planning tool for the optimal allocation of FCSs in a 
given network structure. The tool applies an 
evolutionary Multi-Objective (MO) philosophy based 
on the Non-dominated Sorting Genetic Algorithm-II 
(NSGA-II), in order to minimize the negative effects of 
concentrated and intense absorptions of power in the 
FCSs across the distribution network without penalizing 
their diffusion in the urban texture. In order to improve 
the results of the allocation, the optimization procedure 
is also able to use the main attributes of the traffic 
streams (e.g. patterns, density, and velocity) in different 
sectors of the examined territory to choose the most 
fitting FCS’s consumption profile. 
Ultimately, the proposed tool will have not only the 
power to optimize fast charging station locations with 
respect to different mobility and regulatory scenarios 
but also to identify the critical limits of EV penetration 
in a given MV system. 

DEFINITION OF FCS LOAD PROFILES 
In every power system planning study it is essential the 
characterization of all customers in terms of electric 
power consumed or generated. For new loads, like the 
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FCS, where historical statistics are not available, this 
could become a critical issue because an incorrect 
representation can easily take to underestimate or 
overestimate their impact on network planning and 
operation. As briefly described in the previous section, 
in [2] the authors presented a Monte Carlo simulation 
methodology able to consider several aspects that may 
influence the request of fast charge for EVs: the driven 
distance of each journey, the speed and the gas 
consumption (that depend on the driving style), the 
departure time, the initial SoC (taking account also of 
the existence of home charging facilities), the SoC 
threshold that induces the driver to recharge its EV, the 
possible occurrence of a queue in the FCS during peak 
recharging hours, and some others. At the end of this 
stochastic process, the methodology gives a daily 
demand profile with an expected demand value and a 
standard deviation for each interval (Fig. 1). 
 

 
Fig. 1 - Example of the daily power demand profile of a FCS 
calculated in a region with a traffic stream of 20000 EVs (80% of 
commuters and 20% of non regular drivers), an average daily covered 
distance of 100 km and 100% of domestic slow charging availability 
(hypothesis: charging pole always available – no waiting time). 

If no limit is given on the number of FCSs, the 
methodology assesses the daily demand profile 
associated with the total energy request for fast 
charging. Then, this profile is scaled to the single FCS 
assuming that the overall consumption is equally 
distributed among the charging infrastructures (the EVs 
are uniformly spread in the area). By so doing, the 
methodology estimates the minimum number of FCSs 
that avoids the occurrence of vehicles’ queues for 
recharging (no waiting time). On the other hand, if a fix 
number of FCSs is imposed lower of the previous ideal 
number, the maximum values of the demand in each 
hour of the load profile is bounded to the maximum 
power available, and some saturation effects start to 
appear delaying the time of recharge for some EVs. In 
these cases, the average duration of the fast recharge 
increases due to the time spent on the queue, and an 
average waiting time can be estimated for the specific 
FCS configuration. 

OPTIMAL ALLOCATION OF FCS WITH 
NSGA-II 
A software tool for the optimal allocation of distributed 

resources, developed by the authors in the past years 
[4], has been adapted to the optimal allocation of FCSs. 
The optimization algorithm is based on a MO technique 
named NSGA-II. Its peculiar aspect is the classification 
procedure of the individuals of a generic population 
(fitness function), based on the concept of Pareto 
dominance. If the coordinates of a vector  
measure negative attributes, x Pareto dominates a vector

, indicated as , when  for all 
coordinates i, with strict inequality for at least one 
coordinate. If an alternative x is not Pareto dominated in 
a given set of alternatives, it is Pareto optimal. By 
referring to the topic of the paper, an alternative is a 
particular allocation of FCSs, whereas the coordinates 
are the value of the OFs assessed for this FCSs’ 
placement. Thus, the Pareto optimal set (front) of 
individuals is constituted by those solutions that cannot 
be improved in any OF without deteriorating some of 
the other OFs considered. The NSGA-II algorithm sorts 
a population into different non-dominated levels or 
fronts (the non-domination rank). Initially, it finds the 
Pareto optimal set of the current population; then, it 
excludes temporarily these solutions and searches again 
the Pareto optimal set among the remaining individuals 
of the population. This process is repeated until all 
fronts are identified and associated to all individuals. In 
order to allot a unique fitness value to each solution, a 
second attribute is calculated that orders the individuals 
in each front on the basis of their density along the front 
(crowding distance).  
The typical genetic operators of Selection, Crossover, 
and Mutation are applied to an initial parent population 
in order to form a new offspring population. Then, the 
solutions of the two sets are compared in order to form 
the new population of parents. This evolution process is 
repeated for a prefixed number of generations or until 
no significant improvements have been found in the 
optimal Pareto set. 

Coding of a solution 
In the optimal allocation proposed, the network 
topology is assumed fixed, all the branches are known, 
and the evaluation of the objective functions depends 
only on size, expected daily demand profile and location 
of FCSs. For those reasons, each solution has been 
coded by using a vector, whose size is equal to the 
number of MV/LV nodes, in which each element 
contains the information on the presence of a FCS unit. 

Daily demand profile for each FCS 
The aforementioned methodology for the definition of 
the daily fast recharge profile assumes the same shape 
for all the charging stations in a generic region. 
However, thinking to the traditional petrol stations in a 
typical city, this is not true, and the exploitation of the 
filling infrastructures depends on the traffic streams. 
Therefore, in order to make the allocation results more 
linked to a specific territory, a rough representation of 

nx∈ℜ

ny∈ℜ x ≺ y i ix y≤
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the EV’s traffic flows has been used: the MV 
substations of the electric distribution network have 
been classified into three sub-areas characterised by 
different EV numbers (high, medium and low density). 
Then, given a genetic individual (FCS configuration), it 
is known the ratio between the numbers of EVs and fast 
charging stations in each sub-area, allowing the 
algorithm to assign a specific daily profile to all the 
FCSs in the corresponding sub-area. 

Objective Functions 
The MO optimization has been conducted by 
representing the goals of three different stakeholders: 
the Distribution Network Operator (DNO), the FCS 
owner and the EV drivers. 

The DNO’s perspective 
The appearance of FCSs on the MV distribution 
networks is seen by the DNO as a sudden increment of 
the total load to supply. Thus, the preference of the 
DNO is that the FCSs are few and favourably placed so 
as to minimize their impact on the network costs (both 
CAPEX and OPEX). The Net Present Value (NPV) of 
the network investment, CU, is calculated with (1):  

  
CU = C0 j = B0 j + M0 j − R0 j( )

j=1

Nbranches

∑
j=1

Nbranches

∑         (1) 

where Nbranches is the number of network branches, C0j is 
the net present cost of the jth branch, and B0j, M0j, and 
R0j are respectively its building and management costs 
and its residual value transferred to the cash value at the 
beginning of the planning period by using economical 
expressions based on the inflation and the interest rates. 
The NPV of the cost related to the total energy losses in 
the whole planning period, CL. is determined with (2): 

  
CL = α h ⋅cL_ kWh ⋅EL,h

h=1

N

∑                    (2) 

where  is the unitary cost of the energy losses, 
EL,h is the total energy loss in the hth year of the 
planning period of N years, and α is the actualization 
rate. In order to simplify the calculation, only the 
natural growth of the existing traditional load has been 
considered, whereas the number of EVs (and 
consequently the shape of the daily charging curve) has 
been assumed invariant in each year. 

The FCS owner’s perspective  
Clearly, the objective of an investor on FCS is its 
earning maximization. Hence, he presses to build the 
charging infrastructures where the traffic streams are 
more intense (typically, in the main gates of the city). In 
order to give this goal the canonical form of a function 
to minimize, this second Objective Function (OF) has 
been expressed as the difference between the FCS 
building cost, CFCS, and the revenue from the charging 
service, RFCS. The first term is evaluated in (3): 

  
CFCS = cFCS _ kW ⋅PFCS ,s

s=1

NFCS

∑   (3) 

where NFCS is the number of FCS connected, PFCS,s is 
the nominal power of each FCS, and cFCS_kW is the 
unitary building cost per kW of the FCS. As 
assumption, all the charging infrastructures are built at 
the beginning of the planning period. The revenue 
gained by the charging service is evaluated in (4): 

  
RFCS =α ⋅1−α

N

1−α
⋅ rFCS _ kWh ⋅EFCS ,s

s=1

NFCS

∑
⎛

⎝⎜
⎞

⎠⎟
        (4) 

where EFCS,s is the annual energy sold for recharging 
(FCS consumption) that depends on the FCS daily load 
profile, and rFCS_kWh is the unitary revenue per kWh.  

EV drivers’ perspective  
From the point of view of EV drivers, the charging 
stations should be easy to reach and with a charging 
pole always available in order to recharge their battery 
immediately. Thus, their wish is to have as many FCSs 
as possible uniformly spread on the territory. This goal 
has been formalized with the minimization of the time 
needed to recharge. Excluding the technical time for 
recharging the battery (that depends on the fast charging 
power and the SoC of the battery), this OF is composed 
of two terms: the waiting time at the FCS due to the 
presence of other EVs, and the time necessary to reach 
the FCS. Consequently, the EV drivers’ perspective has 
been expressed by (5): 

  

OFEV =
Twait ,a ⋅N FCS ,a

a=1

Na

∑

N FCS ,a
a=1

Na

∑
+TFCS _ arrive             (5) 

where Na is the number of sub-areas of vehicles’ density 
into which the territory (e.g. the city) has been divided, 
Twait,a is the average time that EV drivers have to wait 
before charging, estimated by the Monte Carlo 
methodology previously described on the basis of the 
density of EVs and the number of FCSs (NFCS,a)in the ath 
sub-area, and TFCS_arrive is the average time needed to 
reach the FCS and to start the charging operation. If in 
the ath sub-area no FCSs are present, this time has been 
assumed very large. 

CASE STUDY 
The network considered for the study is the 
representative urban network for the Italian MV 
distribution system, developed in the ATLANTIDE 
project [5]. A primary substation, with a 40 MVA 
transformer, feeds 96 MV nodes grouped into eleven 
feeders (Fig. 2). A mix of residential, commercial, 
offices, and small industrial customers absorbs 18 MVA 
at the peak of the starting year, with a constant power 
demand growth rate of 2% per year in the whole 
planning period of 10 years.  
Considering that domestic slow charge will be the 

  
cL_ kWh
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preferred charging option, the drivers that prevalently 
use the FCS will be commuters. The extension of the 
region, which commuters come from, allows identifying 
an average covered distance and its variability, which 
strongly influence the shape of the FCS load profile. In 
the simulations, 5000 EVs pass daily through the area 
covered by the distribution network, most of them being 
commuters (80%) with an average covered distance of 
30 km. The network nodes have been classified in terms 
of EVs density in three sub-areas: 5000, 3000 and 1000 
EVs respectively for the high, medium and low density 
sub-areas. In order to simplify the analysis, every FCS 
has 6 charging poles of 50 kW for a total nominal power 
of 300 kW. The life cycle of the charging facility has 
been assumed equal to the planning period. The unitary 
building cost of the FCS has been assumed 400 €/kW, 
whereas the unitary revenue of the recharging is 0.1 
€/kWh. The set of different daily demand profiles, 
parameterized in terms of EVs per FCS, are depicted in 
Fig. 3. All the cases not included in this set have been 
obtained scaling the nearest charging profile. 

RESULTS AND DISCUSSION  
The MO optimization has been carried out assuming a 
population size of 500 individuals and a maximum 
number of genetic iterations equal to 50. The Pareto 
optimal set of solutions is illustrated in Fig. 4, Fig. 5 and 

Fig. 6 for all the three possible pairs of Objective 
Functions. An in depth analysis of the solutions, often 
assisted with a Decision Theory tool, allows the planner 
to select the most adequate according to his goals or the 
best compromise over the Pareto set. 
Looking at the DNO’s point of view, it can be observed 
that the Italian representative urban network appears 
electrically strong. Indeed, for any solutions of the 
Pareto set (but also for the other configurations 
examined during the MO optimization) no network 
upgrades are required due to the installation of the 
FCSs. In other word, the existing conductors and 
transformers are abundantly oversized to hold the 
increase of demand related to the EVs’ fast charging. 
This result has a general validity for big cities, where 
the services’ infrastructures are typically designed to 
meet the natural growth of the demand for several years, 

 
Fig. 2 - Urban representative distribution network. 

 

 
Fig. 3 - Set of daily recharge profile for different EVs' concentrations. 

 

 
Fig. 4 - Optimal Pareto set: DNO vs. FCS owners. 

 
Fig. 5 - Optimal Pareto set: FCS owners vs. EV drivers. 

 
Fig. 6 - Optimal Pareto set: DNO vs. EV drivers. 
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but it could fail in urban contexts with medium or small 
load density, for which this oversize is lighter. 
Moreover, it must be observed that the absence of 
network upgrades is also motivated by the non-
coincidence of the peak demand between the FCS and 
the existing load profiles (the first occurs at 18:00 
whereas the latter is shifted towards 21:00). However, a 
full analysis should consider also the additional demand 
of the domestic slow charge, disregarded in this paper.  
In any case, due to this result, the DNO Objective 
Function depends only on the cost of the Joule energy 
losses. Its generalized minimum increment for all the 
solutions over the existing value (without FCSs) 
confirms the robustness of the distribution network and 
the good placements obtained from the optimization. 
The best configuration (solution C) is identified by a 
minimum number of FCSs (three, one for each sub-
area) connected in the feeders with the lowest energy 
demand (Fig. 7), conditions that allow minimizing the 
overall energy losses. 
A careful inspection of Fig. 4 shows that the goals of 
DNO and FCS owners are in good agreement. In fact, 
also for FCS owners there is convenience to install a 
low number of charging facilities in order to limit their 
investments and maximize their incomes. The best 
configuration (solution B) is characterized by three 
FCSs connected in the sub-areas with medium or high 
traffic density (Fig. 7). This behaviour is corroborated by 
the worsen solutions (those with a positive value of the 
Objective Function that corresponds to a net economic 
loss), all marked by a high number of FCSs (always 
greater than 30). In the development of this research, the 
goals of these two stakeholders could be more 
differentiated by modelling those commuters that decide 
to recharge their EVs outside the urban boundaries each 
time they encounter a queue to recharge. In this case, 
the FCS owners will tend to install the minimum 
number of charging facilities that avoids or limits these 
events. 
Finally, in absolute contrast with the previous 
stakeholders, the EV drivers aspire to maximize the 
number of FCSs so as to minimize the charging time. In 

fact, the best configuration (solution A) exhibits 39 
FCSs optimally spread on the network with absence of 
queues and a reduced average distance to the nearest 
charging facility. 
A good compromise among contrasting goals can be 
generally found in the knee of the Pareto front. For 
instance, solution D corresponds to a configuration with 
12 FCSs sufficient to minimize the risk of queue 
occurrence at the charging stations, to produce a good 
profit to the FCS owners and to keep acceptable the 
impact of the fast charging facilities on the distribution 
network. 

CONCLUSIONS 
The definition of a Fast Charging Station daily load 
profile has been the first step of a more complex study 
that aims at identifying the optimal number and position 
of FCS in given area taking account of the expected 
consumption for fast recharge. Since the effective FCS 
power demand is directly influenced by the number of 
charging facilities available as well as by the traffic 
conditions, an integrated probabilistic planning 
algorithm is proposed for the optimal placement of 
FCSs. The proposed methodology, based on a Multi-
Objective approach, allows considering multiple 
contrasting goals in order to drive the research towards 
a configuration not only economically and technically 
convenient but also robust in respect to the selected 
objectives.  
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Fig. 7 - Best FCS configurations for DNO and FCS owners. 


