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ABSTRACT 

The area wide usage of smart meters in low voltage grids 
enables the identification of the three-phase system state 
with linear state estimation (SE) systems. In order to lo-
calize large measurement errors also bad data detection 
algorithms have to be applied. But as the measurement 
redundancy is typically small, the probability of bad data 
detection is usually small, too. This paper proposes a 
special three-phase SE approach which enables the relia-
ble detection of bad data on the basis of the well-known 
normalized residuals method. In contrast to other algo-
rithms active and reactive currents as well as absolute 
current values are used as input data for a linear SE sys-
tem. Despite the simplicity of the process the results gath-
ered from simulations and a field test are promising, 
showing appropriate bad data detection probabilities 
especially for voltage and active current bad data. 

INTRODUCTION 

For the optimal operation and control of low voltage (LV) 
grids, the system state, which equals the complex voltages 
at each node, must be known at any time. For this case, 
special LV state estimation (SE) systems have to be devel-
oped and applied in practice which shall estimate the net-
work state with sufficient accuracy. Prospective available 
measurement data from smart meters installed at each and 
every customer can be used to gather operational network 
variables which are used as SE input data. 
Conventional SE algorithms are usually not usable for LV 
grids because of a lack of measurement equipment result-
ing in a negative measurement redundancy η. This is 
shown by the definition of η with the number of independ-
ent measurements M and the number of network nodes N:  

 
M
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As experience shows, for effective compensation of meas-
urement errors and especially bad data (BD), the meas-
urement redundancy η should attain values of at least 0.5 
[1]. In contrast to HV grids η cannot be easily increased 
by branch current or branch power measurements because 
LV grids often consist of buried cables. Another differ-
ence in LV state estimation is the need for three-phase SE 
due to asymmetric system states, which leads to a signifi-
cantly higher computational effort.  

The development of a LV SE algorithm is the purpose of 
the field test project SmartSCADA [2]. It includes a smart 
meter rollout in a semi-urban LV grid with high penetra-
tion of photovoltaic (PV) systems at 120 households and 
the development of a LV state estimation algorithm based 
on smart meter data, PV-feed-in forecasts as well as pseu-
do measurements for unmeasured loads. Voltage and cur-
rent magnitudes as well as active and reactive currents 
with sign are measured for all phases. The measurement 
redundancy for the test grid is 0.94 . 

LINEAR LV STATE ESTIMATION BASED ON 
SMART METER DATA 

Fundamentals of LV State Estimation 
Voltage and current magnitudes, active or reactive powers 
and currents measured by area-wide installed smart meters 
can be used as input data for LV SE systems. Within the 
field test project, a linear SE algorithm has been developed 
which means that the SE is based on voltage magnitudes 
as well as active and reactive current measurements. The 
benefit is that the algorithm is fast and not prone to con-
vergence problems. The accuracy compared to nonlinear 
approaches is still adequate enough. Due to usually 
asymmetric loads the LV SE system has to be applied for 
three-phase network states. In this context the three-phase 
optimization problem is formulated in symmetrical com-
ponents (SC) with a positive (‘1’),  negative (‘2’) and a 
zero (‘0’) sequence system. For all transformations it is 
assumed that the angles between the line-to-ground volt-
ages are 120° which is a permissible assumption for LV 
grids. The three-phase system state vector x in algebraic 
form is defined in SC as (2). Here s,reu  is the vector with 

all real parts, s,imu  the vector with all imaginary parts of 

the complex node voltages s,iU  at network nodes i in SC 

system s. 

 
TT T T T T T

1,re 1,im 2,re 2,im 0,re 0,imx u u u u u u     (2) 

Assuming the weighted least square (WLS) method the 
general objective function ˆJ( )x with the estimated system 

state x̂ , the measurement value kz  and the measurement 

variance 2
k  can be described by (3). Thereby the row 

vector T
kh  relates measurement kz  to the state vector x .  
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In matrix form the objective function results in (4), where 
z  is the measurement vector in SC (5), H  the measure-
ment model matrix with the linear functions kh  (6) and 

where R  contains the measurement variances (7).  

    T 1J( )       x z H x R z H x  (4) 

  T1 k Mz z zz    (5) 

  T1 k MH h h h   (6) 

  2 2 2
1 k MdiagR       (7) 

LV-SE based on the augmented matrix approach 
The solution of the WLS optimization problem can be in 
general obtained by using the well-known augmented 
matrix approach [1]. The idea behind is to separate the 
virtual measurements, e.g. sum of currents at a node 
equals zero, from the regular measurements and write 
them as equality constraints. Representing virtual meas-
urements with C x  and the estimated regular measure-
ments with R H x  the WLS problem can be formulated as 

shown in (8-10). Here, r represents the difference vector 
between actual and estimated values of regular measure-
ments which is called the residual vector. In the end it can 
be formulated as a Lagrangian function as shown in (11).  

   T 1minimize J x r R r  (8) 

 subject to 0 C x  (9) 

 Rand 0   r z H x  (10) 

      T T
RJ       x λ C x μ r z H x  (11) 

Due to two equality constraints, (11) has two sets of La-
grangian multipliers, which are often denoted as λ  and μ . 

The Lagrangian function can also be written as a linear 
matrix optimization problem, which is showed in (12). 
Here the coefficient matrix is called Hachtel’s or aug-
mented matrix. It has good mathematical properties, espe-
cially when applying an additional weighting factor α for 
adjusting R [1]. The fundamental structure of the meas-
urement Jacobian matrix RH  in SC is similar to the nodal 

admittance matrix and described in detail in [3]. 
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Consideration of absolute current measurements 
By using only voltage magnitude as well as active and 
reactive current measurements as SE input data, current 
BDs are not identifiable as there exist no dominating ele-
ments in the residual sensitivity matrix for current meas-
urements. Hence, also measured current magnitudes are 
considered. But as the SE equations have to be linear an 
approximation has to be used. A complex current 

IjI e  with absolute value I  and current angle I  is 

shown in (13). Here, the exact absolute value is calculated 
by the active and reactive currents activeI and reactiveI . It 

can be shown that I  can be approximately calculated as a 

linear combination by (14) depending on activeI , 

reactiveI and a selectable angle  .  

I Ij j2 2
active reactiveI e I I e      (13) 

 I Ij j
active reactiveI ' e cos I sin I e          (14) 

The relative approximation error rele  is calculated by (15) 

and equals zero when I    is chosen. A deviation be-

tween  and I  of 30° results in a relative error of 10 %, 

 rel I
I I '

e 1 cos
I


       (15) 

With this approximation the SE equations for absolute 
current values can be formulated in SC by (16) where s 
represents the SC system. Here it is assumed that the volt-
age 1,kU in the positive sequence system is placed on the 

real axis of the complex plane. 

   '
I,s,k I,s,ks,k s,k s,kI cos Re I sin Im I       (16) 

The measured three-phase absolute currents Lx,kI , Lx 

representing the phase, also have to be transformed in SC 
by (17) where T  is the well-known SC transformation 

matrix. For this, also the current angle I,Lx,k  is used 

which is calculated by the measured active and reactive 
current. In this context, voltage angles are assumed as zero 
which is a permissible assumption in LV grids. 
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 (17) 

As active and reactive currents are affected by measure-
ment errors Ie , also I,Lx,k  has an additional error angle. 

It is denoted as I,Lx,k  and calculated by (18). The max-

imum value I,Lx,k max
  depending on the standard devi-

ation of current measurement errors is achieved when 
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I,active I,reactivee e   or vice versa.  Fig. 1 shows the max-

imum absolute current angle error as a function of the 
absolute current. 

reactive

active

reactive I1 1 reactive
I

active I active

I e I
tan tan

I e I
 
   
         

 (18) 

The effect of current angle errors in three-phase system 
onto the absolute current values in SC is shown in Fig. 2. 

It can be stated that the maximum relative error 
120I max

e  

related to the maximum current value of SC increases 

with I,Lx,k max
 . Analytically 

120I max
e  can be approx-

imately calculated by (19) which is the result of a curve 
fitting process on the basis of simulation data. 

  120I max maxmax
e sin 0.04 sin 4       (19) 

Bad Data Detection and Localization 
After solving the linear state estimation equations BD 
detection and localization algorithms have to be applied in 
order to check if BD exist. A common way for BD detec-
tion is the χ²-test which determines the probability of an 
existing BD on the basis of the estimated state [1]. If a BD 
exists it can be identified by analyzing the normalized 
residuals (NR), the weighted difference between measured 
and estimated values. If a NR is greater than a specified 
limit the related measurement is denoted as BD and can be 
replaced by a pseudo measurement. 

 

Fig. 1: Maximum absolute error of current angles  
in phase quantities 

 
Fig. 2: Maximum relative error of absolute current  

values in sequence components  

In the first step of the BD detection all residuals kr  are 

normalized to their respective variance as shown in (20). 
These variances are obtained by the so called residual 
covariance matrix Ω . It includes all variances of the un-
normalized residuals and can be derived outgoing from the 
augmented matrix and the measurement variance matrix 
R  by (21). The scalar kk  which is used for the normali-

zation of the residual kr  by (20) is the diagonal element at 

position kk of Ω . All N
kr  combined into a vector form the 

normalized residual vector Nr . The elements of it are 

normally distributed with a mean value of zero and a vari-
ance of one as shown in (23) which enables the correct 
comparison of the normalized residuals against each other. 
By comparing the N

kr  against a specified limit 120  volt-

age and current BD can be localized in the SC system. 
However, statements on the phases affected by BD cannot 
be taken.  

 N k k k
k

kk kk

ˆr z z
r


 

 
 (20) 

 1

1
Ω R A R   


 (21) 
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    
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 (22) 

  N 2
120~ N 0, 1   r  (23) 

The BD localization in the three-wire system is done for 
each measurement k  by (24) by retransforming the com-

plex normalized residuals N
k,(1)r , N

k,(2)r  and N
k,(0)r  in SC into 

the complex residuals k,L1r , k,L2r , k,L3r  in the three-wire 

system.  

 

N
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2 N
k,L2 k,(2)

2 N
k,L3 k,(0)

rr 1 1 1

r a a 1 r

a a 1r r
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          
        

 (24) 

Experience shows that it is appropriate to define a detec-
tion limit L123  in the three-wire system as L123 4   for 

voltage residuals, L123 3   for active current residuals 

and L123 2   for reactive current residuals [4]. Then re-

siduals above the specific limit are denoted as BD and can 
be replaced by pseudo values. However, as each and every 
residual is also more or less dependent from each other 
which is described by the residual covariance matrix Ω  it 
is recommended to replace always only the measurement 
value which results in the largest residual. After that the 
optimization problem has to be solved once again. 
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SIMULATIVE SYSTEM VERIFICATION 

The analysis of the BD localization process is done out-
going from synthetic measurement data sets. Various BD 
scenarios have been defined on the basis of smart meter 
data which cover a large part of the BD cases occurring in 
reality. Regarding this, also single and multiple BD are 
considered with different bad data values. The evaluation 
of the test data shows that voltage magnitude BD can be 
reliably detected by the developed SE process depending 
on the chosen detection limit and the ratio between bad 
data absolute value BDe  and the applied standard devia-

tion for the voltage measurement error U . Within the 

project U  was specified to 0.2 V. Regarding this, Fig. 3. 

shows the detection probability functions. It indicates that 
a detection limit related to the normalized residuals of 

L123 4   is appropriate. The localization of active and 

reactive current BD is much more difficult as the current 
residuals are more or less dependent from each other. But 
due to the consideration of absolute current values for 
each and every phase the detection probabilities for active 
and reactive current BD are sufficient. In detail they are 
shown in Fig. 4 and Fig. 5. Here the standard deviation of 
the current measurement error I  was specified to 0.1 A. 

It can be shown that the current BD detection is not as 
reliable as for voltage magnitude BD. However, active 
current BD with BD Ie   greater 15 and reactive current 

BD with BD Ie   greater 20 can be detected with a proba-

bility of 95 % when L123 3.5   respectively L123 2   has 

been chosen. The taken assumption of I 0.1 A   implies 

that active current BDs with values over 1.5 A and reac-
tive current BDs with values over 2 A can probably be 
detected.  

CONCLUSION AND OUTLOOK 

The results of the developed SE algorithm tested by vari-
ous simulations are very promising. They show that the 
future rollout of smart meters at every household can pro-
vide a way for estimating the state of LV grids. The in-
creased measurement redundancy allows the BD analysis 
to work great for voltage measurements. Additionally, it 
works appropriate for active and reactive current BD even 
in cases of asymmetric system states. This is especially 
due to the linear consideration of absolute current meas-
urements. Further investigations, simulations and tests will 
be done concerning the quality of pseudo measurements as 
well as an advanced SE process for systems with lower 
measurement redundancies. Also, additional investigations 
will be done concerning an improved BD detection of 
small multi-phase current bad data. Finally, the algorithm 
will be implemented on a SCADA server at the local DSO 
in spring 2016 and tested under real grid operation condi-
tions. 

 
Fig. 3: Voltage bad data detection probability depending 

on the detection limit 

 
Fig. 4: Active current bad data detection probability 

depending on the detection limit 

 
Fig. 5: Reactive current bad data detection probability 

depending on the detection limit 
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