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ABSTRACT 

Energy modeling and energy forecasting play an 
important role in Energy management systems. Since 
residential consumptions have a large share in load 
consumption, an accurate load prediction can avoid most 
of failures in power grid. Furthermore, new players 
(Electric Vehicle, Renewable Energy) have emerged in the 
electrical systems that have caused demand forecasting to 
gain special interest. So, apart from demand forecasting, 
power generation and power saving forecasting models 
have also received increasing attention, especially. In this 
paper we propose a comprehensive model for electricity 
load prediction in smart home. We cover all sources of 
electricity consumption, generation and storage in this 
model to achieve a prediction with high accuracy (e.g. 
user power consumption behaviors, electric vehicles, 
renewable energies and etc.). In the other words, our 
model consists of three sub models: user electricity 
consumption sub model, renewable energies sub model 
(solar cells and wind turbines) and EVs power 
consumption and storage sub model. All these sub models 
together build an accurate model that provides low error 
predictions for EMSs. We use statistical models for power 
consumption/generation forecasting; also we considered 
preprocessing algorithms for preparing raw historical 
data. These preprocessing algorithms are helping us to 
smooth and omit unusable data that are collected during 
some transient events. 

INTRODUCTION 

According to common classifications [1], demand 
forecasting models are classified based on two different 
criteria: the forecasting horizon and the aim of the 
forecast, also we can divide them into linear and non-
linear models and a third group consists of models that use 
a combination of both. In general we have three categories 
in forecasting horizon: Very Short-Term Load Forecasting 
(VSTLF), Short-Term Load Forecasting (STLF) and 
Medium-Term and Long-Term Load Forecasting (MTLF 
and LTLF). The most important forecasting horizons are 
weekly, daily and hourly. The main difference among the 
three is the scope of the variables used. Also, we can 
classify forecasting models based on the number of values 
to predict (aim of the forecast). Two main groups exist: 
the first group is formed by those that forecast only one 
value (next hour’s load, next day’s peak load, next day’s 
total load, etc.); the second group consists of forecasts 
with multiples values, such as next hours, peak load plus 

another parameter (for example, aggregated load) or even 
next day’s hourly forecast- the so-called load profile. As 
we mentioned, there is another classification that is based 
on type of models (linear and non-linear models). In the 
1940s, linear models started to be used to forecast 
demand, and these evolved into the ARMA model and its 
variations. From 1985 on, researchers started to realize 
that non-linear models accurately described the relation 
between periodical and residual components, non-linear 
models (based on artificial neural networks (ANNs)) have 
gained more and more attention since the second half of 
the 80’s. This evolution is due to the fact that certain 
researchers achieved great advances on ANNs. Although 
most of the works on demand forecasting published since 
2000 have focused on non-linear models, the ANNs 
cannot guarantee generating an optimal global solution, 
also their performance and reliability within an EMS 
running system cannot be guaranteed. Furthermore, most 
of the ANN prediction methods have associated the input 
electricity load profile with outdoor temperature, indoor 
temperature, or motion sensors within the household, so 
that ANN can correlate the electricity load profile along 
with these data. Collecting massive amount of information 
about the user and the surrounding environment increases 
prediction method overload and it is impossible in some 
situations. It is also noticeable that most of predictors are 
using historical data to train their models, so predictor 
performance is under the influence of recorded data, in the 
other words; resolution of historical data has an important 
effect on model accuracy. As we mentioned, there is a 
tradeoff in the use of linear/nonlinear models, for 
electricity load prediction. 

SYSTEM MODEL 

We consider the smart home with two renewable energy 
generators (e.g. photovoltaic solar panels and wind 
turbines), a set of home appliances, a set of Electric 
Vehicles (EVs) and a home central controller. Fig. 1 
shows the smart home structure in the presence of 
distributed generators and storage. EVs can play both 
power consumer and storage roles in the smart home. The 
central controller of the smart home is responsible for 
aggregating consumption and generation data from 
renewable energy generators, EVs and home appliances 
for scheduling and forecasting the smart home power 
consumption. In the following subsections, we discuss 
each component of the system model. 
Household Consumption 
 
We suppose each appliance is scheduled to consume 
electricity or remain idle in an hour h during the day. Each 
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home appliance may have different load levels. 
 

 
Fig. 1. Smart Home Structure 

Let  be the number of home appliances (e.g., washer, 
dryer, refrigerator and etc.),  the mean electricity 
consumption of kth home appliance during one hour in lth 
load level,  the appliance state in an hour h (e.g. off 
or on in specific load levels) and  the appliances 
predefined load levels. Then, the total electric energy 
consumed by home appliances in an hour h is given by: 
 

 

      (1) 
(1) 

where for each , the following constraint 
must be satisfied: 
 

 
         (2) (2) 

Renewable Energy Sources 
 
We consider a smart home with gs photovoltaic solar 
panels and gw wind turbines. The total electricity 
generated in an hour h is given by: 
 

                           (3) 
 
Solar Power 
Photovoltaic solar cells have high variability. In addition 
to their deterministic variable nature due to day and night 
cycles, there is a randomly variable component due to 
weather conditions, e.g., clouds. In order to overcome 
power generation variability, energy storage can then be 
used to make the PV generation profile more dispatchable 
by increasing its availability [2]. So PVs and their 
rechargeable batteries can provide a reliable power 
generation and storage source, particularly in the 
situations where PVs are the only source of power in a 
power grid. Since the battery capacity plays an important 
role in PV power generation system reliability and it 

would depend on the environmental conditions and the 
time of the day, choosing an optimal battery size can be 
still critical [3], [4] and [5] discussed about PV battery 
sizing in smart grids. We consider the solar power as a 
subsidiary power source. Battery sizing is out of the scope 
of this paper. The electricity generated by the ith 
photovoltaic (PV) panel can be calculated as follows [6]: 
 

                        (4) 
 
where c, e, K and  represent the number of photovoltaic 
cells in the PV panel,  the corresponding efficiency, 
critical radiation point in W/m2 and solar radiation 
respectively. 
 
Wind Turbines 
The renewable energy sources are naturally stochastic, 
wind is a highly unstable energy source that cannot be 
fully described by any stochastic model. Wind speed at 
every hour is correlated with the speed at previous hours 
[6]. Increasing order of the statistical model can improve 
the wind speed forecast. The electricity generated from jth 
wind turbine in an hour h is given by: 
 

                                    (5) 

where  , A and  represent the wind speed in hour 
h, the air density in kg/m2, swap area of the turbine and 
Betz limit, respectively. 
 
Electric Vehicles 
 
Due to environmental and economic factors, the use of 
electric vehicles (EV) and plug-in hybrid EVs (PHEV) is 
expected to rise considerably in the near future [7]. EVs 
charging load have an important impact on smart grids, 
especially in large scales [8]. Although EVs charging load 
in absence of a proper grid demand management can be a 
notable threat for grid availability, its ability in storing 
electricity can provide home power demands in grid 
failure or peak times. Let  the number of EVs,  the 
mean electricity consumption of mth electric vehicle 
during one hour and  the EV state in an hour h (e.g. 
charging, discharging, or remaining idle), then we have: 
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Power Storage Resources 
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We consider two resources for storing electric power, 
renewable energy storage and electric vehicles batteries. 
We provide a proper combination of EVs power 
consumption and generation (e.g. discharging) in equ.(6). 
The total stored electric power for renewable energy 
batteries in an hour h is given by: 
 

	
  

where α and β represent the solar cells and wind turbines 
batteries efficiency respectively and PC(h) is the 
instantaneous current power consumed by the home in an 
hour h. 

EXPRIMENTAL RESULTS 
To evaluate the performance of our proposed model, we 
collect required raw data from UCI and Umass 
repositories. Also we use the Iowa Environmental 
Mesonet (IEM) datasets [9] for cloud cover and wind 
speed forecasting for the Toronto city in Canada during 
year 2015. These repositories provide home hourly power 
consumption and weather condition. Before injecting 
these data to our proposed model, we apply some 
refinements to datasets. These refinements contain lack of 
data fixing, noise removing and etc. We chose Normalized 
Least Mean Square (NLMS) adaptive predictor for 
forecasting power consumption/generation based on 
historical data. NLMS predictor is a statistical method that 
uses previous value of a time series in order to predict 
future values. We use 10% of data for training our model; 
amount and scale of training data have straight impact on 
forecast accuracy. 
We use Mean Absolute Error (MAE) for evaluating 
accuracy of proposed model as follows: 
 

 
                    (8) 

 
Fig. 2 depicts predicted cloud cover in comparison to real 
cloud cover for a year with µ = 0.0004, train ratio=0.1 (in 
other words, we use 10% of data for training) and 
order=10. As shown in Fig. 2, the value of MAE is almost 
0.223. Fig. 3 for two different historical records size equal 
to 8760 and 50256, depicts predicted power consumption 
in comparison to home real power consumption with µ = 
0.0004, train ratio=0.1 and order=10. As shown in Fig. 3, 
predictor parameters (e.g. µ, order and train ratio) and 
dataset records count have important impact on the 
predictor accuracy. The value of MAE for 50256 
historical records is 1.8272e-009.  

 
Fig. 2. Cloud cover prediction 

 

 
Fig. 3. Power consumption prediction  
 
Fig. 4 also shows comparison of predicted and real wind 
speed with µ = 0.0004, train ratio=0.1 and order=10 and µ 
= 0.009, train ratio=0.2 and order=10. Wind speed 
prediction error for each set of predictor parameters are 
shown in Fig. 4. Results show that power consumption is 
more predictable in comparison to the cloud cover and 
wind speed, in other words statistical predictor can better 
follow the pattern of power consumption than cloud cover 
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and wind speed because of renewable energies instability. 
Also as mentioned before; dataset scale decreasing make 
predictions more accurate by preparing preferable 
predictor training data. 
 

 

 
Fig. 4. Wind speed prediction 

CONCLUSION 
This paper provides a power consumption forecasting 
model for smart homes. Proposed model consist of three 
main sub models including; user electricity consumption 
sub model, renewable energies sub model (solar cells and 
wind turbines) and EVs power consumption and storage 
sub model. Our prediction method is based on statistical 
models. Before injecting historical data into the model, 
some refinements such as lack of data fixing, noise 
removing, digitizing were applied to datasets. Evaluation 
results confirmed that the proposed model is able to 
predict home power consumption with acceptable mean 
absolute error.  
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