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ABSTRACT 

This paper presents estimation strategies for voltage 

measurements developed to enhance the robustness of 

distributed voltage control in secondary substations in 

case of communication delays and failures. Different 

estimation concepts are described and benchmarked. The 

most promising concepts were implemented and validated 

in field tests in two low voltage grids for several months. 

Results from these field experiments and underlying 

simulations are shown and the impact of the estimation 

concepts on the voltage control process is discussed. 

I. INTRODUCTION 

Voltage rise has turned out to be the most critical system 

boundary for the integration of distributed generation in 

rural low voltage grids. Distributed voltage control can 

effectively solve upcoming voltage problems with the 

requirement of a reliable communication infrastructure. 

Within the project “SmartCityVillach – Vision Step I” [1] 

a novel voltage estimation concept was developed to 

support distributed voltage control in case of 

communication loss or delays. The voltage estimator was 

implemented as additional component for the voltage 

control environment which was developed within the 

“DGDemoNet SmartLVGrid” [2][3] project, where 

different voltage control strategies were tested in three 

Austrian LV grids. In this predecessor project the MV/LV-

transformer’s tap position was controlled under 

consideration of actual voltage measurements from the 

grid provided by smart meters over power line 

communication. 

Based on findings and experiences within the predecessor 

project a goal within “SmartCity Villach – Vision Step I” 

was it to improve the robustness of developed control 

approaches against communication failures. The new 

voltage estimator component supplies the low voltage grid 

controller with substitute values in case of a medium and 

long-term communication failure. Therefore, different 

methods for voltage estimation were investigated and 

benchmarked against each other. An overview of the 

investigated voltage estimation methods is given in chapter 

II.  

The most promising of the investigated concepts were 

tested in a field test over several months in Austrian LV 

grids described in chapter III. The field test setup and the 

system architecture are described in chapter IV. The 

recorded data from the field test grid was used for 

simulations to compare the performance of the most 

promising estimation methods that were investigated 

(chapter V). 

State of the art 

State estimation is state of the art for monitoring and 

control on HV level and it is nowadays also common to be 

used on MV level [4]. However, for LV systems the 

existing solutions do not scale well and also suffer from 

high engineering effort for configuration. Therefore, more 

tailored solutions for LV circumstances are required. 

Several research projects investigate in state estimation 

and voltage control especially for LV grids [3][5][6]. 

When communication failures occur, pseudo-

measurements can be used for state estimation, leading to 

a decrease in estimation quality especially when multiple 

meters fail at the same time [4]. 

Distributed voltage control concepts for LV grids as 

developed in [2][3] have less system requirements on the 

grid, so a complete state estimation or providing topology 

information is not necessary. Consequently, new 

estimation methods have to be developed that have low 

requirements on configuration and maintenance. 

II. INVESTIGATED VOLTAGE ESTIMATION 

ALGORITHMS 

Within the project, five different voltage estimation algo-

rithms were analysed which can be categorized as 

‘topology based’ or ‘history based’: 

Topology based algorithms 

The first category is based on topology information from 

the grid and is stateless which means that no learning 

phase for the algorithm is necessary, because all 

information for the estimation process is given. Within the 

project, two topology based algorithms were investigated: 

Distance-matrix algorithm 

The voltage estimator has as rough topology information a 

matrix with the distance from each node to each other. 

When a communication loss to a meter occurs, the 

estimator takes the value from the meter with the least 
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distance as a replacement value. 

Kriging algorithm 

This method is initially used in geostatistics for 

interpolation of missing values (coordinates) [7]. The 

model was adapted to be used it in low voltage network, 

namely by using line impedance instead of geographic 

coordinates. A weight-function is used to estimate missing 

values. 

History based algorithms 

The second category has no dependency on any grid 

information like topology or load profiles because the 

algorithms learn the grid characteristics by building up a 

history database. Within the project, three history based 

algorithms were investigated: 

Root-mean-square-deviation minimization (“Base”) 

Each time every communication link is available, the 

whole set of measurements are stored in a database by 

adding a line to a matrix. Every line of the matrix 

represents a vector of voltage values of each measurement 

point at one timestamp, and each column represents a 

series of measurements of one smart meter. In times a 

communication link is broken, the existing measurement 

vector is compared against each vector stored in the 

database matrix. In the vectors with the least square error 

to the existing measurements, the values that correspond to 

the inexistent measurements are taken for the estimation of 

the missing values. 

Weighted K-nearest Neighbour regression (“Mean10”) 

The quality of the estimation of the “Base” algorithm can 

be improved by averaging over more than one vector with 

the smallest square errors. Simulations showed, that an 

optimum of maximal 10 vectors should be considered, 

when considering more, results get worse again. 

Optimized regression algorithm (“Opt10”) 

This algorithm is an extension of the “Mean10” algorithm, 

where the weighting factors for the linear combination of 

the chosen vectors are the solution of a constrained 

quadratic optimization problem. 

Benchmark of voltage estimation algorithms 

The advantage of topology based algorithms is that the 

algorithm is immediately available for operation, but the 

grid information has to be provided and maintained 

manually. The history based algorithms do not need any 

grid data update in case of topology changes, but the 

algorithm requires some operation uptime before 

meaningful estimation results can be achieved. Simulations 

that assume a sufficient operational uptime of the history 

based algorithms nevertheless showed that estimations 

results of history based algorithms have a slightly higher 

mean estimation error than topology based algorithms. On 

the other hand, the maximal estimation error was 

significantly lower for the history based algorithms. 

Considering the requirements of voltage control, it is more 

important to have a smaller maximal estimation error than 

having a lower mean estimation error. Therefore history 

based algorithms were used in field tests and are further 

analysed. 

III. FIELD TEST GRID 

Field tests were operated in two Austrian LV grids over 

several months. This paper focusses on the discussion of 

the results obtained in the bigger grid. In this grid around 

100 customers are supplied by a 250kVA 20kV/0.4kV 

transformer that is equipped with an OLTC with +/-4 taps 

with 1.5% voltage change each tap. A part from rather 

short feeders there is one long feeder with around 590m in 

the grid with a 50kWp PV inverter connected at the end of 

this feeder (Figure 1). Within this grid, 19 smart meters on 

selected critical nodes regularly transmit actual voltage 

values to the centrally operated voltage controller over 

PLC. The most critical nodes are meter 1 and 9 being the 

points in the grid with the lowest voltages and meter 14 

and 17 being the points with the highest and sometimes 

also the lowest voltages in the grid (see Figure 1). 
 

(1)

(9)

(14)

(17)

 
Figure 1: Austrian field test low voltage grid with the 

for four most critical points in the grid (1) (9) (14) (17) 

IV. SYSTEM ARCHITECTURE AND FIELD 

TEST SETUP 

For field tests, the system architecture that was developed 

within the “DGDemoNet SmartLVGrid” [2][3] project 

was used and extended by the voltage estimation 

application. The estimation application receives all voltage 

measurements from the grid and in case of a 

communication loss to one or more meters the estimator 

calculates replacement values and sends them to the 

voltage controller (Figure 2). 
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Figure 2: Schematic representation of relevant system 

components for voltage-estimation and -control 
 

During the field test period, voltage measurements from 

the grid were intentionally suppressed on a daily basis to 

activate the estimator on these days. This process was 

automatized so that days with and without communication 

losses were switched in a daily cycle. When suppressing 

only one meter at once, voltage estimation will be a very 

easy task because adjacent voltage measurements are still 

available. To test the estimator comprehensively, both 

meters at the end of the longest feeder (meter 14 and 17) 

in the grid were suppressed simultaneously, so that no 

adjacent measurement is available. Additionally it was 

decided to suppress meter 1 and 9, which both show low 

voltages at the same time. While this suppression was 

performed, the suppressed values were logged to be able 

to benchmark the estimation values.  
 

Day 1:
reference
(without

supp.)

Day 2:
meter

14 & 17

Day 3:
meter

14 & 17
1 & 9

 
Figure 3: Filter cycle for suppression of voltage 

measurements in the field test grid (failure scenarios) 

V. FIELD TEST RESULTS 

A direct benchmark of the voltage estimation algorithms 

can be achieved by comparing the estimated voltages 

against the suppressed measurements voltages from the 

grid. This is shown in Figure 4 for the investigated 

algorithms ‘Base’, ‘Mean10’ and ‘Opt10’ (see chap. II for 

description). For the ‘Base’ algorithm, the estimation error 

is below 1.4V for 50% of the time, and it is below 3.7V 

for 95% of the time, but the highest errors go up to 10.4V 

when considering communication loss to meter 14 and 17. 

While ‘Mean10’ leads to significantly better results than 

‘Base’, ‘Opt10’ performs best, even if the results are not 

significantly better than the ones from ‘Mean10’. When 

considering the additional communication loss to meter 1 

and 9, maximal estimation error is lower, which can be 

considered as a numerical contingency, but all other 

percentiles behave as expected. In general, the estimation 

error decreases with higher algorithm complexity. 
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Figure 4: Absolute estimation error of three algorithms 

in cases of the investigated failure scenarios (boxplots 

show the 0, 5, 50, 95 and 100% percentiles) 

 

Figure 4 does not give any information about the impact 

on the voltage control process. A high estimation error is 

only severe in cases were the highest grid voltage is 

estimated too low, or the lowest grid voltage is estimated 

too high. In these cases the voltage controller gets an 

incomplete view on the grid situation and thus violations 

of voltage limits can occur. In cases were the highest grid 

voltage is estimated too high or the lowest too low, the 

voltage limits will be maintained even with safety margins 

(as long as the estimation error is not too high). 

The impact of the different estimation methods on the 

power quality in the grid is shown in Figure 5. All 

boxplots show the 0, 5, 50, 95, and 100% percentiles of 

the 10min-average-values of grid voltages. The grey 

dotted lines indicate the voltage limits that were 

configured in the voltage controller. The first boxplots in 

both diagrams show that grid voltage limits can be 

maintained when no communication failure occurs. The 

second boxplots show that grid voltages will be violated 

on the upper and on the lower limit when communication 

failure occurs and no estimation is performed. The ‘Base’ 

method leads to slight violations in voltage limits, but 

‘Mean10’ and ‘Opt10’ were nearly able to fully avoid 

voltage limit violations. 

In both failure-scenarios, remaining estimation errors lead 

to an increase of the used voltage band from 8.8% without 

communication failure to 9.3% in the best case ‘Opt10’. 

Summing up, the results show that voltage limit violations 

can be significant if no replacement values are available 

for voltage control in times of communication loss to 

critical nodes, and history-based estimation algorithms 

with medium complexity were effectively able to avoid 

voltage limit violations. According to these results, the 

estimation algorithm ‘Opt10’ with the highest complexity 

brings best results, but the improvement compared to 

‘Mean10’ is not significant. 

Voltage 
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Data 
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Figure 5: Impact of the different estimation methods on the power quality through different information bases of the 

voltage controller (boxplots show the 0, 5, 50, 95 and 100% percentiles of the voltages) for two failure scenarios 

VI. OUTLOOK 

Although the performance of the history-based algorithms 

(in the 95%-Percentile and below) look very promising, 

there are many possibilities to further improve the 

algorithms. The current implementation of the history-

based algorithms only considers voltages resulting from 

the grid’s power flow for finding the best match in the 

database. In future it can be analysed whether information 

about daytime or day of week can increase the voltage 

estimation quality (assuming recurring customer 

behaviour). Furthermore the transformer power flow can 

be also a criterion for comparison. In grids with significant 

PV infeed, a PV reference measurement can also help to 

improve estimation quality. And finally the combination of 

history-based and topology-based algorithms might bring 

very robust results. 

Nevertheless the focus must be kept on solutions that are 

easy to install and easy to configure with low maintenance 

effort. Otherwise solutions will get close to LV grid state 

estimation, which will may be necessary in case of urban 

grids due to taking also current measurements into 

consideration.   

VII. CONCLUSION 

Simulations as well as field tests showed the general 

feasibility of the developed solutions. The field test 

component showed in real operation the expected 

behaviour according the preceding simulations. 

Concerning the estimation error, 95% of the estimations 

were calculated successful with small estimation errors. 

Higher estimation errors that could have negative 

influence on the voltage control process occur only rarely. 

This critical point can be refuted by the fact that bad 

estimations will not necessarily lead to negative effects in 

the voltage control process because not every lost 

communication package is a critical one. Simulations 

showed that despite the rare occurrence of high estimation 

errors the voltage estimator supports the voltage controller 

in maintaining voltage limits effectively. The modular 

design of the estimation component and the fact that no 

configuration is needed for history-based methods enables 

a comfortable integration of the component into the 

existing framework. 
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