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ABSTRACT

The integration of distributed energy resourcef
distribution gridsleads tonew challengg for planning
and operation as uncertainty about the grid state is
increased concurrenthState estimation can identify the
grid state in distribution grids with little measurements
in place. In this paper a low voltage grid in Germany
was analysed. Iwas found that the estimates of the
grid states in a high temporal resolution are of suitable
accuracy and can be used for deriving relevant cases to
be considered in grid planning. The thypkase
implementation allows the analysis of both the voltage
magitude and the differences in phase voltages.

INTRODUCTION

Due to the integration of new distributed energy
resources, such as photovoltaic systems, distribution
grids are facing new challenges. These are mainly

related to higher loading of assets and operation at the

voltage limits defined by grid codes and natib
standards [1]. Two implications of these changes for
distribution grid planning and operation are addressed in
this paper. First, even with a higher amount of
uncertainty due to volatile fedd, grid planning still
has to be done economically, i.e.idgreinforcement

should only be done where it is necessary. Second, new

control mechanisms in grid operation have to be in line
with a safe and reliable operation.

Since measurement equipment is scarce in distribution
grids, the momentary grid state, esjpdly in the low
voltage level, is typically not available to the grid
operator. Therefore, the identification of problems is
done in simulations assuming different load and fieed
scenarios, which involves security margins and serves
as a worstase assssment. In this paper it is
investigated how methods of state estimation (SE) can
improve the knowledge of typical situations arising in
the specific distribution grid for deciding on
reinforcement measures, deployment of innovative
assets andarametrizéon of control approaches.

METHODOLOGY

State estimation based on weightedstsquares (WLS)
algorithms calculates the most likely system state by
minimizing the estimation error and is well established
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in transmission grid operation [2]. Equation (1pwis
the objective function that minimizes the sum of
squared deviations between the measurement \alue
and the estimaté(x) resulting from the state vectar
for every measurementweighted withw.
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Equation (1) can be rewritten to

(2)

Where W is the wighting matrix associated with the
measurements. Generally, the elements of W correspond
to the variances of each measurement and therefore
reflect the uncertainty of the respective measurement.
This optimization problem can be solved iteratively
using tke delta of the state vector from iteratioto k+1
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where H is the Jacobian matrix
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and G is the Gain matrix
Oy = OV 0 106, ! (5)

If the incrementgpxis smaller than a predefined
convergence level, the final estimate for the given
situation is achieved [3].

Threephase curredbased SE has proven to be a
suitable solution for the estimation of the grid state in
the lowvoltage (LV) level including unbalanced loads
and distributed energy resources [4]. The implemented
system state vecto; comprises the comgk currents

I, of every branch in the grid and the complex slack
bus voltageUg,«for every phasé [5]:
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The implemented algorithm accepts four different types
of measurements:

1 Nodal Voltage and Power

1 Branch Current and Power Flow
In order to solve he WLS problem, missing
measurements are compensated using pseudo
measurements providing the solver with the required
information of active and reactive power per phase of
the unmeasured nodes. These pseudasurements are
of high uncertainty and have aw weight in the
estimation process [6]. Therefore a precise estimation
can only be based on a sufficient number of real
measurements with little uncertainty.
Since the performance of SE is dependent on the
measurement position, measurement placementrise do
using an optimization algorithn7].

FIELD TEST REGIONS

In total two low voltage grids in Germany
and ‘" Ki ssmd hsa thé ‘test case for the
investigation. These grids are home to the research
project “ S m[8]r Since @pigh mamber of”
measurement devices have already been installed in
these grids, the quality of the estimation can be assessed
by comparing measurements that were not used in the
estimation with the estimate. Thus, the evaluation
criterion for estimation quiity is the deviation between
estimated voltage and measured voltage at the smart
meters spread throughout the grids.

In the following analysis the results for the grid in
Kisselbach will be shown.The low voltage grid
comprises seven feeders with approaiety 150 loads
and 14 photovoltaic installations. Itotal over 150
Meters are available, of whictonly 18 were usedas
input for the SE.

Although the SE algorithm is capable of processing
other types of measurements as well, only the line to
earth voltag magnitude and the active and reactive
power at the respective node are used for the estimation.

STATE ESTIMATION QUALITY

In order to interpret the results of the state estimation,
i.e. in the presented application primarily the voltage, in
a first step e accuracy of the estimated has to be
assessed. Only if the quality of the estimatsuificient,

the SE results will reduce uncertainty in planning and
operation.The results show good estimation quality,
even when applying only very litle measurensen
resulting in deviations between (unused) voltage
measurements and estimatealuesof typically below
1% (Figure 1).The average deviation is 0.49% and in
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the range of the measurement uncertainty. Also the 90%
quantile of 1.34% and the average over mh@ximum
deviation for every time step of 1.65% are tolerable.
Previous analyses have shown similar behavior [6], [7].
However, both the comparison and the estimate itself
are sensitive to bad datdhe maximum deviation
between measurement and estimatereamge up to 9%.
On the one hand low estimation accuracy can be caused
by a wrong reference value and on the other hand a
faulty input will lead to a wrong estimate. In the field
trial this was observed at some places where the phase
assignment was not gsistent, e.g. the values for phase
2 and 3 werswitched.
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Figure 1: Relative DeviatiorbetweerMeasurements and
Estimated Voltage

Apart from the discussed outlietfse estimation quality

is suitable for the application in planning and operation
of low voltage gridsHowever further research on how
to overcome the issues of bad data in distribution grid
state estimation is necessary.

RESULTS

In the following section, the results of the S&
Kisselbach in August 2015 are presented. The Results
were calculated in a@mporal resolution of onminute
Figure 2 shows the voltageistribution for the month

for all three phases as lute-earth voltage. In the
histogram it can be seen that the majority of values is in
the range between 230 and 240 During the
considered period the voltage thus was characteristically
above nominal voltage.
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Figure 2: Histogram ofEstimated Voltages

Table 1 provides an overview of the voltage behavior in
the investigatedperiod of time in Kisselbach. The

maximum and minimum voltage are found at thenesa
place.

Table 1 suggests that the values, especially the
considered quantiles and average, are similar for all
phases and that the voltage is symmetrical. The -three
phase SE allows a detailed analysis of the voltage
asymmetry in the grid. However, sintke measured
values only include voltage magnitude, tiecuracy of

the estimate of phase angle is unclear. Therefore the
asymmetry analysis is based solely on the absolute
value of the difference in voltage magnitude between
the threephases. Accordinglythree different deltas
between phase voltages are calculated: L1 and L2, L1
and L3 as well as L2 and L3.

The resulting values cannot be compared directly with

results are given separated for every phase and thethe asymmetry margin given in DISEN 50160, but

information about nmima, naxima, median average
and qantiles provide an understanding of the
distribution of occurredvoltages. Both decreased and
increased values for the voltage can be found. Wigh t
minimum value in the one minute resolution at 214
However, only 5% of the Vaes are below the nominal
voltage of 230V. Simultaneously only 5% of the values
are above 241.VY. The average valuef approximately
235V reflects the observed shape fréigure?2.

It can clearlybe seerthat the maximumalue for phase

L3 is above the 10% margin defined in DENN 50160.
However, it has to be noted that the value estimated is
only valid in one minute whereas the norm is based on
10-minute mean vaks. The respective 10 minute
average including the maximum value of phase L3 is
246.25V and therefore significantly below the limit of
253V. For the other phases all one minute values have a
maximum of 250v.

Table 1: Overviewof Estimated Voltages [V]

Phase L1 L2 L3 Overall
Minimum 214.6 2193 2142 214.2
5% Quantile 2300 2304 230.4 230.2
Mean 2355 235.7 2359 235.7
Median 235.8 2358 2360 235.9
95% Quantile 241.4 241.7 242.0 241.7
Maximum 2506 2503 255.9 255.9

With respect to theemporal and spatiaistribution of
extreme values, i.e. maximum and minimum, the results
show two characteristics:

First, all xtreme values occur differentpoints of time

for the different phases.Thus, six different points of
time slow a limit for the voltage in one of the phases.
However these extreme values can only be found in
four different places. The maximum voltage arises at the
same position for Phase L1 and L3. For phase L2 the
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provide an insight on the difference in voltaigethe
threephase low voltage grid.

Figure 3 displays the histogram of the calculated phase
differences for all three cases. The peak value can be
found close to zero and the majority of values is below
4.6V, which corresponds to 2% related to nominal
voltage.
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Figure 3: Histogram ofVoltage Magnitude Deltas

In Table 2 an overview of the distribution of voltage
differences in the investigated period of time in
Kisselbach is provided. The results are given separated
for every case and the information abouinima,
maxima, median average and ugntiles provide an
understanding of the distribution of occurred voltage
deltss. The average value of below\l reflects the
observed shape frorhigure 3Figure 2. However, for
safe operation only the upper limits are of inter8s%

of the values arebelow 6.38V. The maximum
difference between phase L1 and L3 amounts to
29.36V, which corresponds to approximately 12.8%
related to nominal voltagd-or the other two cases the
maximum differences between the phases are also
above 20V. As described above, this is nmdmparable

to the limits provided in the norm, but suggests that in
few points of time a significant amount of voltage
asymmetry can be found in the grid.
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Table 2: Overview of Voltage Differencf/]

Phase L1-L2 L1-L3 L2-L3 Overall
Minimum 0.00 0.00 0.00 0.00
5% Quantile 0.02 0.02 0.02 0.02
Mean 0.95 1.06 0.95 0.99
Median 0.65 0.67 0.60 0.64
95% Quantile 5.25 6.79 6.76 6.38
Maximum 25.17 29.36 21.54 29.36

The emporal and spatiaflistribution of themaxima
shows thathe maximum difference in phase voltages

for all the cases occurs at the same node in the grid.

However, the point of time varies for tdéferent deltas

in phase voltage magnitude.

The SE results provide a comprehensive picture of the
grid state in the awsidered period of timeThe gained
insight can be used both for planning and for
operational purposes.

BENEFIT
OPERATION

Based on the results above, 9 points of time with
extreme values either for voltage magnitude or the
voltage differese between the phases have been
identified.

For those points of time the respective power at all

FOR PLANNING AND

nodes is known as a result of the SE and thus the

relevant load ases for planning can be derived
Therefore no assumptions for coidence éctos of
load and generation arenecessaryin the planning
process. However, a safetyamgin @n still be applied
which is suggested in order to allow for the uncertainty
in the estimatelt should be noted that the considered
period of time of one month is as seasonéllences
are not visibleThe resulting load cases can be applied
in shortterm planning such as thessesment of
connectiorrequest®f new generators

In addition to this, the gridtate can be automatically
monitored enablingsmart gid approachesFar example
the application in a antrol schemesuch as Smart
Operatorf1], where it can be usedrfimprovedtraining
caseq9] and forthe realtime operationas sucH10].

CONCLUSION AND OUTLOOK

The implemented SE algorithm shows a suitable
accuracy inthe field test grids. However, bad data is
especially critical in a distribution grid setup with little
measurement devise It has been found, that the
implemented SE can provide valuable information on
the actual situation in the grid that can be used fo
planning and operational applications.

The analysis of the grid in Kisselbach has shown that
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both the extreme values of voltage magnitude and the
maximum of phase voltage difference serve as potential
cases to be considered in the planning process.

The gained data can be applied in further investigations
such as the integratiorofentialfor new generators, e.g.
photovoltaics, or loads, e.g. electric vehicles.

The impact of the newly generated load cases on the
reinforcement requirement needs to be farth
investigated sincethe grid expansion demand is highly
dependent on the assumed load scenario.
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