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ABSTRACT 

Dynamic Line Rating (DLR) is a promising field of 

research aiming to help network operators face 

challenges, such as increased penetration of renewable 

energies and peak electricity demand. Research on real-

time overhead line ampacity estimation is currently 

advanced and, in the last few years, research has 

started to address medium-term DLR forecasting. The 

focus is on probabilistic forecasts, in order to select 

ratings associated with very low probability of 

occurrence. For this reason, 1%-quantiles are usually 

selected. In this paper, the authors propose a 

methodology for selecting the most appropriate 

quantiles based on a cost-benefit analysis, considering 

both the economic benefits of an increased line 

ampacity and the costs associated with a DLR forecast 

that is higher than its observed value. The proposed 

methodology is evaluated using realistic weather data 

on a virtual line connecting Belgium and France. 

INTRODUCTION 

Nowadays, static seasonal ratings are applied to 

overhead lines in order to control statutory clearance. 

The corresponding current limit is traditionally 

calculated using methods defined in standards such 

those of IEEE [1] or CIGRE [2], and considering 

weather parameters defined as constant for a fixed 

period of time. This kind of rating is called Static Line 

Rating (SLR). 

Due to its static nature, SLR is bound to be below the 

instantaneous rating most of the time, and thus 

restrictive weather characteristics are considered (i.e. 

low wind speed and high ambient temperature). This 

restrictive aspect may lead to congestion situations. To 

overcome this issue, an alternative way of defining the 

rating has emerged based on a dynamically modified 

ampacity that depends on real weather characteristics. 

This kind of rating is called Dynamic Line Rating 

(DLR). The development of real-time DLR tools is 

already advanced. A detailed state of the art on DLR 

technology is presented in [3]. Adopting DLR is 

expected to bring several benefits for network operators 

[4-6]. However, fully exploiting these benefits requires 

inputting information on DLR not only into real-time 

processes but also the various decision-making 

processes related to grid management for the 

forthcoming hours and days. This requires forecasting 

DLR for a future time period.  

DLR forecasting has been addressed in the literature 

only recently. For medium-range forecasts (6-48 hours), 

models providing low-quantile forecasts were 

developed in [7-10]. Indeed in practical 

implementations, low quantile forecasts are preferred in 

order to avoid situations where the DLR forecasts are 

greater than the measurements. Infringing the thermal 

limit of an overhead line causes the line to sag more, 

which reduces the statutory clearance to the ground. 

However, note that in all the above works, the authors 

arbitrarily selected a quantile for their forecast, usually 

equal to 1%. In this paper, a methodology is proposed 

for a dynamic selection of the quantile used for DLR 

day-ahead forecasts. This is compared with the choice 

of an arbitrarily chosen but fixed quantile. The proposed 

methodology is illustrated in the test case of a virtual 

line connecting Belgium and France, considering the 

local weather and the day-ahead and balancing markets 

in the two countries. 

METHODOLOGY 

Optimal quantile selection 

A model providing probabilistic forecasts is a model 

that can calculate at time t, considering the information 

available   , for a horizon h, a distribution function 

 ̂      for the possible values assumed by the parameter 

 ̂     . To use the model in standard decision-making, it 

is often necessary to translate the probability density 

function calculated to a single value, for example by 

selecting the value  ̂     
  corresponding to a specific 

quantile τ.  

The quantile τ can be arbitrarily selected, but it can also 

be the result of an optimisation, taking into account 

safety or financial aspects, as shown below. Such a 

selection is made considering that the forecast error 

    
        ̂     

 , has a cost per unit equal to     
  or 

    
  when its value is respectively positive or negative, 

as shown in Equation (1).  
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Considering the above costs, an optimal quantile can 

thus be selected through the minimization of the 

function (2), the optimization problem to be solved 

being described in (3).  

  (   ̂     )  ∫  (   ̂     
 )   ̂           (2) 
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An example of this approach is shown in [11], where 

the authors present a methodology according to which 

probabilistic wind power forecasts are used for trading 

wind generation in an electricity market with the goal of 

mailto:georges.kariniotakis@mines-paristech.fr


CIRED Workshop   - Helsinki 14-15 June 2016  

Paper 347- 

 

 

Paper No  347     Page 2 / 4 

 

reducing imbalance penalties. The optimal forecast in 

this application is not necessarily the one that minimises 

the Mean Absolute Percentage Error (MAPE), but rather 

the one that minimises financial losses.  

If the costs     
 and     

  are independent from     
  and 

positive, the quantile minimizing this equation can be 

calculated analytically using formula in Equation (4): 

 
    
   

 
    

 

    
      

  
(4) 

DLR Forecast optimised quantile 

The method described above is here adapted to DLR 

forecasting. We consider that a quantile forecast of the 

DLR,  ̂     
  can be calculated. In this case, both  ̂     

  

and     
  are expressed in MVA. The DLR is 

considered as the thermal limit of the line, although this 

value should be reduced by taking into account other 

criteria due to grid limitations, for example: i) the 

limited size of balancing reserves on both sizes of the 

line, ii) the risk of removing N-1 configurations in case 

a DLR forecast appears to be false, iii) the current 

stability limits, and iv) the thermal limits of other 

components, such as circuit breakers or transformers. 

However, for the sake of simplicity, these constraints 

are not considered in this study.  

The following study is carried out for a line connecting 

two different electricity markets. The case study was 

designed to express simply the financial cost at both 

sides of the line due to errors related to DLR 

forecasting.  As a reminder, as described in [12], a 

producer participating in an electricity market can go 

through four channels:  

 The electricity futures market, on which long-term 

contracts on electricity bids are made. 

 The day-ahead market, also called the spot market, 

on which a unique spot price is set depending on the 

proposed bids.  

 The intraday market, on which the imbalances that 

occurred during the day can be corrected. This 

usually ends from 30 minutes to 2 hours before the 

time of delivery. 

 Towards the end of the intraday market and the 

delivery time, possible imbalances are corrected 

during balancing by the transmission system 

operator. Positive and negative imbalances can have 

different costs.  

The economic benefits associated with DLR forecasts 

are here considered to be dependent from the spot and 

imbalance costs. This involves assuming that the DLR 

forecast error has a different financial cost for positive 

and negative errors: 

 If     
 >0, for a line connecting two areas with 

different spot electricity costs,   
   and   

   (€/MW), 

the following cost is defined in Equation (5): 

      
      

     
    (5) 

This cost is linked to the fact that a better forecast 

would have increased the economic benefits relative 

to the use of the line. It is assumed that the increased 

rating of the line has no impact on   
   and   

  . 

 If     
   , the rating of the line is reduced to     , 

and up and down reserves are activated in the two 

connected areas. If   
    

 , it causes a cost 

described in Equation (6). In the opposite case, the 

indexes need to be swapped:  

     
     

               
            

  (6) 

where   
             is the regulation cost for 

negative imbalances in the first area.   
            

 is 

the regulation cost for positive imbalances in the 

second area. It is supposed that both these 

parameters are independent from d. 

At this point, considering (4), (5) and (6), the quantile 

optimising the financial benefits from DLR forecast can 

be calculated as in Equation (7): 

 
     

   
     

   

   
     

      
               

             
(7) 

CASE STUDY 

The test case considered here is a virtual line at the 

border of France and Belgium, connecting the two 

countries. It is located at the position (3.125°N, 

50.375°E, only one point was considered in this study 

and not the whole length of the circuit), and was studied 

from 1st January 2014 to 31st December 2015. We 

considered that the line is equipped with a 175mm² 

Lynx conductor. 

The spot prices for France were provided by EPEX and 

those for Belgium by BELPEX. The balancing cost data 

were provided by the two national transmission system 

operators, RTE and Elia. 

The DLR was calculated every 12 hours at the studied 

position, using reanalysis data provided by the 

European Center for Medium range Weather Forecasts 

(ECMWF) and the CIGRE standard method for 

calculating DLR [2]. The parameters used were: 

 The 10m East/West wind component Uf (m.s
-1

). 

 The 10m North/South wind component Vf (m.s
-1

). 

 The ambient temperature Tf (°C). 

 The solar radiation S set equal to 0 W.m
-2

. 

The DLR forecasts were generated using Numerical 

Weather Predictions (NWP) provided by ECMWF for 

the same parameters, at 4 positions close to the studied 

point. The prediction horizon h of the forecasts was 

equal to 24 hours. The forecasts were provided with a 

Quantile Regression Forest method (QRF) [13], which 
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was trained with the data from 2014. Data from 2015 

was used for the evaluation. 

RESULTS 

DLR forecasts 

Day-ahead DLR forecasts were provided every 12 hours 

for the studied case, and the 99 percentiles associated 

with the forecasted DLR were calculated. As an 

example, the result obtained for one month is shown in 

Figure 1.  

 

Figure 1. Consecutive day-ahead DLR forecasts from 

01/07/2015 to 31/07/2015.  

Using the MAPE, we can compare the deterministic 

performances of the model with the ones of a 

persistence model, whereby the forecast made at t for t 

+ h is equal to the observation at t. A MAPE of 8.1% 

was calculated for the QRF, and of 11.4% for the 

persistence model. 

Optimised quantile 

Two methods were proposed for the quantile selection: 

 An arbitrarily selected quantile τArbitrary.  

 A dynamically modified quantile in accordance with 

the spot prices, selected using Equation (7). 

Depending on the values of the balancing costs used, 

two quantiles are calculated: τSpot with the mean 

balancing cost values of the same month during the 

previous year and τSpot,Balancing with observed 

balancing costs at time t + h. 

For the first method, the economic benefits linked to the 

current flowing through the lines were calculated for 

various quantiles, from 1% to 100%. As seen on Figure 

2, the benefits were optimised using the 14%-quantile. 

This evaluation was made with the formula in Equation 

(8). 

 
     ( ̂     

      )  |  
         

      | 

    ( ̂     
        )     

               
            

  
(8) 

 

Figure 2. Benefits with an arbitrarily selected quantile 

With the second method, the quantiles were calculated 

for 2015. The mean values for each month were 

provided in Table 1. 

Parameter τSpot τSpot,Balancing 

January 2.5% 2,6% 

February 2.8% 2,1% 

Mars 4.1% 3,8% 

April 10.9% 10,8% 

May 12.9% 14,7% 

June 8.7% 8,0% 

July 7.4% 8,0% 

August 10.2% 8,8% 

September 15.2% 18,2% 

October 9.3% 8,6% 

November 3.9% 4,9% 

December 2.5% 7,6% 

Mean value 7.5% 8.2% 

Table 1. Mean optimal quantile selected during 2015. 

In order to evaluate the financial benefit of the proposed 

approaches, 5 cases were tested and compared: 

1. The 1%-quantile DLR forecasts were used. 

2. The 50%-quantile DLR forecasts were used. 

3. The τArbitrary-quantile DLR forecasts were used. 

τArbitrary is set as equal to 14%. 

4. The τSpot -quantile DLR forecasts were used. 

5. The τSpot,Balancing-quantile DLR forecasts were used. 

The benefits achieved during 2016 for the five cases 

were compared and the results are shown in Table 2. 

The results were normalised with respect to the benefits 

achieved using an arbitrary 1% quantile. 

Case Financial benefits respect to 1% 

1%-forecasts 100.0% 

50%-forecasts 76.7% 

τArbitrary-forecasts 115.1% 

τSpot forecasts 115% 

τSpot,Balancing forecasts 120.2% 

 Table 2. Normalized benefits for cases 1 to 5 

The analysis of these results leads to the following 

considerations: 

 Using an arbitrary 50%-quantile of the forecasts was 

counter-productive.  

 Increasing the chosen quantile from 1% to 14% 

increased the financial benefits by 15.1%. 
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 The choice of a variable optimal quantile taking into 

account spot prices and historical average balancing 

costs increased the benefits by 15.0%. If real 

balancing costs at t+h were taken into account, the 

benefits increased by 20.2%. 

CONCLUSIONS 

The study presented a methodology for selecting the 

optimal quantile to determine a forecast DLR obtained 

using probabilistic methods. The methodology is based 

on a cost-benefit analysis and the aim is to use it, along 

with other criteria, to optimize day-ahead DLR 

forecasts. 

The methodology proposed was tested on a test case 

describing a circuit on which DLR is applied, 

connecting two electricity market zones with different 

prices and balancing costs. This case is simple, and 

more complex situations should be studied further, but 

the observed results are promising and show potential 

benefits compared to the standard method using an 

arbitrarily selected low quantile.  

It should be stressed that whilst the choice of the 

quantile is not influenced by the actual value of the 

rating, the financial benefit calculated is. This means 

that the results presented in Table 2 are more dependent 

on the data used, and in particular on the meteorological 

data used for rating calculations and forecasts, which 

are obtained from 12-hour reanalysis. The use of more 

precise historical weather data is expected to increase 

the precision of the forecasts and the results, but also to 

increase the variability of the rating. Moreover, this 

methodology based on a simple cost-benefit analysis 

does not take into account other DLR limitations, which 

should be included in further studies on adapting DLR 

forecasts to grid conditions. Other criteria, such as the 

costs associated with increased risks, could be 

considered when evaluating DLR forecast errors. 
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