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ABSTRACT 

High power ultra-fast charging stations are required to 

sustain massive diffusion of electric vehicles. We propose 

a business model for a charging station with a stationary 

Li-ion battery pack to alleviate both the high cost of 

power charges and grid investment. The model accounts 

for both the energy storage system cost and capacity fade 

of the batteries. Moreover, we suggest routines for 

optimizing the economic performance.   

NOMECLATURE 

p = demand for power  

pem = hourly mean power demand without battery 

pe = hourly mean power demand with battery 

t = time  

T = time of a cycle, e.g., diurnal, monthly or lifetime of 

battery (months) 

CF = capacity fade of the battery 

cd = cycle depth 

nc = count of cycles (number) 

u = temperature in degrees Kelvin 

v = temperature in degrees Celsius 

k = power tariff 

Ce = Power charge 

r = interest rate 

Pi = The highest hourly grid power demand in month i 

η = system efficiency of the charging station 

Pa = auxiliary power demand 

INTRODUCTION 

Fast charging stations for electric vehicles (EV) with a 

peak power demand of several hundred kW face high 

operating cost because of power charges in some 

countries. With a complete shift in the vehicle fleet to 

EV, demand for fast charging will increase dramatically. 

Charging of EVs is today predominantly at end-station 

parking, e.g., home and office. [1] Indicate, based on 

national statistics for Germany and the UK, that less than 

30 % of EV owners in metropolitan areas will have 

access to home charging. Massive diffusion of fast 

charging stations will increase peak load and may inflate 

power tariffs. Typically, energy cost include a small fixed 

monthly fee, an energy tariff, a power tariff and taxes. In 

a study of a potential EV fast charging station in Australia 

[1] found power demand charges to constitute above 90 

% of total cost. The reason for this high share is that the 

demand for fast charging is likely to exhibit a high peak 

load and a peak power tariff between 5 and 30 US 

$/month (Wishart, J. 2012 in [2]). The high power cost 

may be alleviated by a stationary energy storage system 

(ESS) that smooths the grid power demand. Including 

ESS at the charging station will in addition to reduced 

power charges, reduce grid strain and benefit from low 

energy prices at off peak hours. However, a business 

model must balance the reduced power charges against 

the high investment cost of a Li-ion battery ESS.   

Power tariffs vary both between countries and within 

each country depending on the local demand profile and 

grid capacity. Norway, with a high share of electrical 

heating have high peak power charge during winter 

months while Denmark where heating is mostly provided 

by district heating plants have power tariff only 

following energy consumption. Sweden, with a 

combination of electric and district heating have a flat 

power tariff throughout the year, see Figure 1. Fast 

charging stations may in the short-term cause power 

shortage, affecting both the grid and charging 

availability. With increasing share of intermittent 

renewable energy generation, new tariffs with economic 

benefits for energy storage and active participation in the 

smart energy system is likely to occur.   

 
Figure 1 Power tariffs for the Oslo area (blue), a county on the 

Norwegian south coast (red) and city area of Gotenburg, 

Sweden.  

Megawatt-hour battery containers are being introduced 

in the European energy system, e.g., at wind farms. 

Swierczynski [3] notes that the lifetime of the Li-ion 

battery energy storage is one of the crucial parameters for 

a business model for a wind power plant with storage. 

This is equally true for an EV charging station with Li-

ion ESS. The battery lifetime is determined upon the 

capacity fade, often set to 20 – 30 %. The Li-Ion battery 

capacity fade is highly dependent on several factors, e.g., 

cycle depth and state of charge during resting time 
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(calendar aging). Li-ion batteries are, together with 

power charges the most important cost item for the 

charging station. Thus, minimizing capacity fade and 

maximizing its lifetime is key to economic sustainability. 

A dynamic representation of battery capacity fade and 

lifetime is therefore required.  

The various cycles of the model are explained in more 

detail below, followed by a short discussion and 

conclusion.  

STRUCTURE AND OPERATION OF THE 

CHARGING STATION MODEL 

The model is set up to include all significant cost 

components affected by the ESS. The investment cost in 

grid station includes AC/DC conversion, and the battery 

cost includes DC/DC conversion, battery management 

control and a system to maintain battery temperature 

constant, see Figure 2.  Operation cost are power and 

energy charges.  

  

 
Figure 2 Sketch of the charging station system. The light grey 

items are options included in the model but not in operation. 

Operation principple 

The techno-economic model must satisfy an exogenous 

demand for fast charging. Moreover, grid power capacity 

may be constrained, e.g., at peak hours. The model 

consists of three cycles at the time scales diurnal, 

monthly and economic lifetime of the ESS respectively. 

The ESS charging and discharging follow a diurnal 

timescale. In this first cycle we estimate the minimum 

power demand transferred to the grid and the 

corresponding charge and discharge of the ESS that 

minimize the capacity fade. The ESS capacity fade 

calculations follow each month of operation. In the third 

cycle, we estimate the economic lifetime of the ESS and 

the economic performance evaluated. Finally, the 

optimal size of the ESS is investigated using a 

neighbourhood search.  

 

Demand for fast charging 

The future demand for fast charging is uncertain, but will 

likely be low or zero during the night and exhibit a peak 

during the day. In order to test and check the model 

calculations, I created a diurnal demand profile, see 

Figure 3. The charging demand profile is not based on 

real data from charging stations, but includes two peaks 

of distinctive different magnitude likely to occur.   

 
Figure 3 Stylistic EV charging power demand used for model 

testing. The broken lines are the mean power demand and the 

maximum hourly mean power demand respectively. The solid 

line illustrates how the grid power demand increases when 

battery capacity no longer can provide the energy above mean 

power level.  

Grid power demand 

The stationary battery will modify the power demand 

transferred to the grid.  The minimum grid power demand 

is the average power demand for charging plus auxiliary 

power and charging station system loss. If the battery 

energy and power capacity is sufficient to provide all 

demand for charging above the mean value (striped area 

in Figure 3), the mean will determine the power charge.  

The batteries may not have capacity to provide all 

demand above the average. In order to minimize the peak 

power demand transferred to the grid the battery capacity 

is compared with the demand within the following 24-

hour period starting from 00h00. Potential battery 

capacity is determined by state of charge (SOC) at 

00h00and charging capacity available.  If insufficient the 

model calculates a new level called “minlevel” that is 

minimum power demand transferred to the grid for a 

diurnal period from 00h00 to 24h00, assuming that the 

ESS is charged when EV charging power demand is 

below minlevel and discharged when above. Given that 

the demand for charging is a continuous function F(t) and 

minlevel is a constant p. I define a function H(t) = 1 for 

all F(t) - p ≥ 0 and H(t) = 0 for all F(t) - p ˂ 0. The energy 

demand above p for the first diurnal period is: 

  
Equation 1 

∫[𝐹(𝑡) − 𝑝] ∗ [𝐻(𝐹(𝑡) − 𝑝]𝑑𝑡 = 𝐿

𝑇

0

 

The maximum energy available from the ESS for the first 

diurnal period is: 

  
Equation 2 

∫[𝑝 − 𝐹(𝑡)] ∗ [1 − 𝐻(𝐹(𝑡) − 𝑝)]𝑑𝑡 + 𝑆𝑂𝐶(0) = 𝑀

𝑇

0
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when the excess power p - F(t) is assumed to charge the 

battery.  SOC(0) is battery stage of charge at the start of 

the diurnal period and T is the number of timesteps within 

a diurnal period. Solving L + M = 0 gives the minimum 

value of p for the charging capacity and given diurnal 

demand profile. The value of p is further constrained by 

the charging rate (C-rate) and the maximum battery 

energy capacity. Currently 0.25 C is set as maximum 

charging power and 2 C maximum discharging power. 

Repeating the calculation for 30 days is the second cycle. 

The highest monthly value of p determines the grid 

power demand 

  
Equation 3 Pi = p /η + Pa 

Where Pi is the highest hourly average power demand of 

month i, η is a system efficiency factor less than 1 and Pa 

is the ancillary power demand. 

ESS operation 

Minimum capacity fade of a li-ion battery is obtained by 

cycling and storing the battery around 25 – 50 % of SOC. 

Thus, we do not want to charge to a higher SOC than is 

required to meet expected demand for the remaining of 

the diurnal period. Using equation Equation 2 we find the 

total potential. Now I rather want to calculate the 

minimum amount of charging required. At each time-

step, the model compares battery SOC with the energy 

demand above the value of p. If SOC ˂ L’ or SOC ˂ 

SOC(25 %) then the ESS will be charged. L’ is the total 

demand above p for the remaining of the diurnal period.  

Battery capacity fade 

A Li-ion battery will experience capacity fade from both 

cycling and storage. While the deterioration differs 

between cycling and storage, both are sensitive to 

temperature and, to less extent the average SOC. The 

average SOC are not included in my equation. 

Temperature in the ESS is assumed constant, as there is 

a heating and cooling system. Battery cycles at various 

depth of discharge (DoD) are counted using a rainflow 

method and battery resting-time at different SOC is 

calculated for one month. I assume that the ESS is a 

LiFePO4/C battery and calculate capacity fade is using a 

multi-parameter model. According to [4] the capacity 

fade from cycle aging and calendar aging is respectively:  

 
Equation 4  

CFcycle = 0.00024 • e0.02717 u • 0.02982 • cd0.4904 • nc0.5 

Equation 5 CFcalendar= 

  

(0.019•SOC0.823+0.5195)•(3.258•10-9•v5.087 + 0.295) • t0.8 

 

After each month, the battery capacity fade is calculated 

and the corresponding new capacity is basis for the 

diurnal operation of the model the following month.  

 

ESS lifetime 

Because the battery deteriorates, the energy and power 

capacity of the battery decreases. When/if the battery 

cannot supply the energy above the mean power demand 

for charging the power from the grid must increase. Thus, 

the value of p must increase each month to compensate 

for the battery capacity fade, see Figure 4. Increasing p 

increases the power charge while extending the battery 

lifetime delays reinvestment and thus reduce cost. For 

this stationary application of ESS, lifetime is identical 

with economic lifetime. In this calculation, I assume that 

the reduced electricity cost because charging the ESS 

mostly is at night is negligible, as well as the cost of 

auxiliary power. The balance between the reduced power 

cost and the battery investment thus determines the ESS 

lifetime. 

The reduced power cost is the difference between 

maximum hourly power demand without battery (pem) 

and with battery (pi) multiplied by the power tariff. 

Moreover, I assume that pem is constant over time. The 

reduced power cost Ce in month i is: 

 
Equation 6 Cei = k (Pem – Pi)  

Treating Cei as a continuous function of time Equation 6 

may be written as k • f(t). The (re)investment cost for the 

battery pack Cb is assumed constant. The end of life 

(EoL) for the battery is thus when the derivative of the 

discounted sum of the power cost and battery cost is zero. 

  
Equation 7 

𝑑

𝑑𝑇
〈〈∫ 𝑘 •  𝑓(𝑡) 𝑒−𝑟𝑡

𝑇

0

 − 𝐶𝑏 𝑑𝑡〉 〈1 − 𝑒−𝑟𝑇〉−1 〉 =  0 

The discount factor 1/(1+r)t is replaced by the continuous 

time approximation factor e-r t.  

 

P
em

 

P
i
 

mean 

Figure 4 Stylistic illustration of the grid power demand 

without battery (broken line) and the increasing power 

demand as battery capacity fades (solid vertical lines). 
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Economic evaluation 

The final cycle of the program is a calculation of the net 

present value (NPV) of the ESS and levelized cost 

(LCOE) of EV charging. Moreover, the model will 

search for optimal capacity of the grid connection and the 

battery.  

 

In the NPV calculation the sum of the reduced power 

cost, reduced investment in grid station capacity and 

lower electricity cost are weighed against the additional 

investment in the ESS including DC/DC converter and 

cost of auxiliary power demand.   

 

The optimization routine will search in the 

neighbourhood of the initial battery capacity and grid 

connection. The investment cost for a grid station is not 

a continuous function but rather in large discrete steps. 

Moreover, the grid station capacity must be sufficient to 

satisfy the demand at the battery EoL. 

 

Result and discussion 

Operation of the model with the stylistic demand for 

charging input shows promising results. Starting with 50 

% SOC in the ESS it is charged during the night to 100 

% SOC. The discharge follows the peak demand for 

power. During mid-day the charging of the ESS stops at 

about 25 % SOC because the small afternoon peak in the 

stylistic demand profile is barely above the minimum 

grid power demand (p), see Figure 5. The calculation of 

this first cycle is repeated for 30 days. The second 

monthly cycle exhibits increasing values of demand from 

the grid.        

 

 

The development of the this model started from the 

Energy System Model [5]. The changes required to the 

model to replace the diesel generator with a grid 

connection and introducing the Li-ion battery technology 

have proved substantial. They found that increasing the 

time resolution from one hour to one minute to account 

for short-term variation influenced cost, and more 

significant the capacity of the diesel generator, solar PV 

and lead acid/Aqueous Hybrid Ion batteries. Their 

conclusion regarding the time resolution is therefore not 

directly relevant. However, the need to capture all 

parameters in sufficient detail is the same. The time 

resolution of the diurnal calculation may be as low as one 

minute but currently ten-minute resolution is used. This 

is about a third of the typical time to charge an EV battery 

up to 80 % SOC. variations occurring because of 

connecting and disconnecting EVs at the charging station 

should thus be captured. Updating the battery capacity at 

a monthly resolution is sufficient because expected 

average capacity fade is less than 0.5 % /year. In a 

business situation, the cycling of the battery may be 

determined by real-time data.  

 

Other questions prone to be analysed are e.g., minimum 

total cost or LCOE for charging. Moreover, not using the 

battery during periods with low power tariff because the 

power tariff in some grids varies through the year. The 

investment in the grid station will then be higher and the 

battery will still lose capacity because of the calendar 

effect. However, if the grid is sufficient the grid station 

investment cost is only a tenth of the current battery cost. 

Such a configuration may also facilitate smart system 

behaviour charging the ESS when abundant energy is 

available and supporting the local demand when energy 

generation is low. 
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Figure 5 Output from the model for 48 hours showing the battery 

SOC, charging power demand, power out of the battery and grid 

power demand. 


