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ABSTRACT 

To enable the use of smart metering historical 

information of energy measurements in real time 

network operation, in this paper is proposed the 

generation of pseudo-measurements, which can be 

combined with real-time SCADA measurements and 

feed an online state estimation procedure. Hence 

increasing the network operatorôs situational 

awareness. 

The goal is to obtain a better representation of the 

network operation points, voltage values, than the one 

that is possible to obtain with the direct use of smart 

metering data, which is based on average values, by 

increasing the amount of available real time data 

points. 

INTRODUCTION  

The electrical energy system revolution in Europe was 

started by the unbundling of transmission and 

distribution activities, from production and retail. This 

revolution started with the publication of the directive 

96/92/CE approved in 19 December of 1996, by the 

European parliament. Both transmission and distribution 

were considered as natural monopolies subjected to 

regulatory supervision. At the same time electrical 

mobility and smart grid concepts were developed, and 

all around the world Distribution Systems Operators 

(DSO) launched pilot smart grid projects. Nowadays 

utilities are performing the roll out of those projects in a 

time of economy contraction and tighter regulatory 

framework, pushing DSOôs to postpone grid 

investments and improve system efficiency. 

Smart metering deployment is part of the smart grid roll 

out that can be independently implemented. In fact 

some DSO were already mandated by the regulatory 

agencies to deploy smart metering devices at all 

secondary substations. These devices will collect data 

from all secondary substation power transformers 

energy flows, enabling more detailed power flow 

studies and more accurate power losses assessment. 

From the real time operation point of view no new real 

time measurements are available with this technology. 

Only historical data is available, and the existing 

measurements are not instant power measurements, but 

15 minute period average power, of active and reactive 

energy flows. 

 
Figure 1 - Typical distribution network.  

 

To enable the use of such information in real time 

network operation, at distribution network control 

centers, in this paper is proposed the use of smart 

metering information to generate instant power pseudo-

measurements, that can be combined together with other 

SCADA real time measurements and running the state 

estimation procedure, to estimate the point of operation 

of the distribution network (Figure 1), hence increasing 

the network operators situational awareness. 

The goal is to obtain a better representation of the 

network operation points, voltage magnitudes and 

phases values, than the one that is possible to obtain 

with the smart metering data by increasing the amount 

of available data points, and transform energy 

measurements (average values) into instantaneous 

power pseudo-measurements. 

PSEUDO-MEASUREMENTS GENERATION  

The method proposed to generate pseudo-measurements 

based on smart metering data, is founded on the Inverse 

Transform statistical method [1]. 

This method was applied considering the assumption 

that the probability density function of the average is the 

same as of the instantaneous values. So the generated 

data will have the same probability density function of 

the original data despite the latter being energy data and 

the first instantaneous power data. 

The goal of the proposed method is to transform the 

constant average energy value, acquired for a period of 

15 minutes, and obtain four instantaneous power 

measurements (Figure 2). 

As already mentioned above the available data for each 

secondary substation is the 15 minute active and 

reactive energy average that circulates in the 

transformer of each secondary substation. 
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Figure 2 ï Graphical representation of the pseudo-

measurements generation, which corresponds to a 

transformation of an average energy value into four 

power measurements. 

 

The Inverse Transform Method is based on a theorem 

that state: let X be a continuous random variable with 

distribution function FX. Then U = FX(X) has uniform 

distribution U[0;1]. Or, let U be a uniform random 

variable, U ~ U[0;1]. For any continuous distribution 

function FX the random variable X defined by  

X = FX
-1
(U) has distribution FX. 

The Inverse Transform Method algorithm is simple and 

it is depicted bellow: 

 

1) Generate U ~ U[0;1] 

2) Setting X = FX
-1
(U), and X has distribution 

function FX 

Where: 

U ï continuous variable with a uniform distribution 

between 0 and 1; 

X ï continuous variable with probability distribution 

function FX; 

FX ï probability distribution function of variable X. 

 

To test the proposed approach, a small real network was 

considered (Figure 3), where one year of smart metering 

data was collected for each of the three secondary 

substations (loads of nodes 2, 3 and 4). 

The Inverse Transform Method was adapted in order to 

enable the generation of 4 pseudo-measurements for 

each available data. 

The first step was therefore to transform the 15 minute 

period energy average into 15 minute power average 

values. Subsequently the Inverse Transform Method 

was separately applied to the 6 types of measurements 

available, active and reactive power injection at node 2, 

3 and 4. For each value of each type of variable, 4 

pseudo-measurements were generated. 

The generated data, which corresponds to 140 176 data 

points for each variable, was then used as input for 

power flow studies. One power flow study was 

performed for each data point, and results of branch 

flows as well as node voltage magnitudes were 

collected. 

 
Figure 3 ï Distribution test network. 

 

Figure 4 show the empirical cumulative distribution 

function of the variable related to the active power 

consumption at node 2. From Figure 4 is possible to 

observe that the generated dataset match the empirical 

cumulative distribution function of the original data. 

This is the objective of the Inverse Transform Method. 

Noteworthy the generated dataset is 4 times bigger than 

the original dataset. 

 

 
Figure 4 ï Empirical cumulative distribution 

function of active power at node 2. 

 

PSEUDO-MEASUREMENTS ASSESSMENT 

In order to assess the method a simple state estimation 

technique was implemented to compare the results 

obtained with the original data and the generated data. 

The goal of this step is solely to assess the pseudo-

measurement generation procedure and not the 

estimation process. 

The estimation process is based on a specific type of 

neural network, called autoencoder (Figure 5). This is a 

neural network trained so that the outputs are equal to 

the inputs, hence the number of neurons in the input and 

output layer is the same and typically hidden layers 

have smaller amount of neurons [2-4]. 
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Figure 5 ï Autoencoder. 

 

The training procedure adopted was the extreme 

learning technique [5] which has very efficient 

execution times, when compared to the traditional back 

propagation neural network training method. In the 

training phase one expects that the autoencoder is able 

to learn the nonlinear relationships between the 

electrical variables. 

The estimation process has the capability to combine 

real-time measurements with pseudo-measurements 

(non-real time telemetered measurements) due to the 

fact that in the estimation phase one combine the 

autoencoder input/output with an optimization 

algorithm, that for the non-telemetered data the 

algorithm will minimize the difference between the 

outputs and the inputs of the autoencoder. The 

optimization algorithm chosen was the Evolutionary 

Particle Swarm Optimization algorithm [6]. 

To test the pseudo-measurement generation developed 

technique, two neural networks of autoencoder type, 

one with the original dataset power flow results (35044 

data points for each variable) and other with the 

generated data power flow results (140176 data points 

for each variable), were trained. 

Apart from the 140176 generated data points, more 200 

were generated to create the test dataset, and 200 power 

flow studies were performed. Then from this dataset the 

voltage magnitude at node 1 (V1), and the current 

magnitude in branches 1-2 (I1-2) and 1-4 (I1-4) were 

considered as real-time telemetered data (know values 

that characterized the operating point); and voltage 

magnitudes at nodes 2 (V2), 3 (V3) and 4 (V4), and the 

branch active and reactive power flows at branches 1-2 

(P1-2 and Q1-2), 1-4 (P1-4 and Q1-4) and 2-3 (P2-3 and 

Q2-3) were considered as non-telemetered values, hence 

to be estimated (Figure 3). 

To summarize in the first set of telemetered/non-

telemetered data, from 3 telemetered measurements, one 

estimates 9 non-telemetered measurements, in a total 

dimension of the solution space of 12 measurements. 

The results presented in Table 1 and Table 2 support the 

hypothesis that the Inverse Transform Method is 

suitable to generate pseudo-measurements, and increase 

the representation of the network operation points. The 

ones obtained with the autoencoder trained with the 

generated data are in general better than the ones 

obtained with the autoencoder trained with the original 

data. In only one variable P1-4, active power in branch 

1-4, the results are not improved. On the other hand for 

a small network like the one presented in Figure 3, the 

percentage errors presented in Table 1 do not represent 

a good estimate for the system variables, as for the 

reactive power in branch 1-2, an average percentage 

error of 54% (autoencoder trained with the original 

data) and 41% (autoencoder trained with the generated 

data) are not acceptable. 

 

Table 1 ï Estimation results obtained for an 

autoencoder trained with original data (A1) and with 

generated data (A2); for the first set of 

telemetered/non-telemetered data. 

 
A1 A2 

V1 0% 0% 

I1-2 0% 0% 

I1-4 0% 0% 

V2 0% 0% 

V3 0% 0% 

V4 0% 0% 

P2-3 28% 22% 

Q2-3 34% 29% 

P1-2 2% 2% 

Q1-2 54% 41% 

P1-4 13% 35% 

Q1-4 43% 27% 

 

Table 2 - Estimation results obtained for an 

autoencoder trained with original data (A1) and with 

generated data (A2); for the second set of 

telemetered/non-telemetered data. 

 
Original Data Generated Data 

V1 0% 0% 

I1-2 2% 2% 

I1-4 21% 21% 

V2 0% 1% 

V3 0% 1% 

V4 0% 1% 

P2-3 24% 15% 

Q2-3 35% 28% 

P1-2 0% 0% 

Q1-2 0% 0% 

P1-4 0% 0% 

Q1-4 0% 0% 
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These results suggest that the estimation errors can be 

reduced by adopting another set of real-time telemetered 

measurements. In the second set of telemetered/non-

telemetered measurements, one considered as 

telemetered data the active and reactive power flows at 

branches 1-2 and 1-4, which represent 4 telemetered 

measurements.  

Regarding the second set of telemetered/non-

telemetered data the results (Table 2) showed a decrease 

of the estimation percentage average error, when 

compared with the results presented in Table 1. 

Furthermore better results are obtained for the branch 

power flows, by the estimation performed with the 

autoencoder trained with the generated data, than the 

ones obtained with autoencoder trained using the 

original data. A reduction of 9% and 8% is attained for 

active and reactive power in branch 2-3, respectively. 

It is worth mention that a 0% error is achieved for the 

power flows in branches 1-2 and 1-4, due to the fact that 

in latter test these values are known (considered as real-

time telemetered measurements). 

CONCLUSIONS 

The estimation results obtained suggest that the 

developed pseudo-measurements generation technique 

is suitable and efficient, as better results are achieved 

with the autoencoder trained with the generated data, 

when compared with the results obtained using the 

original data set to train the autoencoder. According to 

the results presented in Table 1 and Table 2, the 

estimation errors obtained with the autoencoder trained 

with the generated data, are smaller than the ones 

obtained with the autoencoder trained with the original 

data. 

Combining this approach with an online state estimation 

technique, the network situational awareness at 

distribution network control centers can be greatly 

improved. 

On the other hand, from the application of the proposed 

estimation technique is possible to conclude that this is 

a difficult problem due to the fact that the information 

contained in the voltage magnitude at the feeder busbar 

and the current magnitude at the beginning of the MV 

feeders, can be insufficient to characterize the feeder 

operation point, related to observability problems.  

On top of this challenge, the fact that voltages at 

distribution levels are very much influenced by the 

presence of online voltage regulators, decreases the 

correlation between the voltage magnitude values at the 

feeder busbar and the reactive power flows along the 

feeder. This is the reason why estimation errors are 

greater in the reactive power flow branch estimation. 

So for the same values of current and voltage magnitude 

different scenarios can occur, due to the presence of 

distributed generation and reactive power compensation. 

This turns the problem very difficult to solve with only 

real-time measurements of voltage and current 

magnitudes at the begging of the feeder. 
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