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Abstract

An aging asset population and a less predictable volatile elec-
tricity consumption and production pattern urge DSOs to get
insight in the condition of their medium voltage (MV) and low
voltage (LV) networks. Because visual inspections of under-
ground networks are impossible and the number of measure-
ments is still very limited, this paper proposes a method to rank
underground assets by looking for trends and patterns in his-
torical outages with help of Machine Learning methods.
Nine years of outages of MV and LV cables and joints in the
network of a large Dutch DSO are analysed. A model is de-
veloped that couples each outage to the asset most probable
responsible. Twentytwo different datasets are coupled with
the asset database, ranging from load estimates of the asset
to distance-to-a-railway. Each set could contain data that ex-
plains or correlates to some of the outages. Several Machine
Learning techniques are benchmarked.
The final model, created by the Random Forest algorithm, is
applied to rank current assets. It is operational to determine
the positioning of an online monitoring system in the DSO’s
MV network.

1 Introduction

The main challenge for European DSOs will be the integra-
tion of decentralised and variable generation and new loads
into the current ageing infrastructure [1]. As this energy tran-
sition is mainly due to the adoption of devices such as solar
panels and electric vehicles, more insight in the condition of
MV and LV networks is necessary. A large part of the electric-
ity grid in Western Europe has been built during the post-World
War II industrial investment recovery and economic expansion.
These parts approach or already passed their technical lifespan
of approximately 50 years. As 41% of the MV and 55% of the
LV lines in Europe are underground [1], an important part of
the challenge in this is how to monitor, refurbish and replace
the underground cables and joints. Until now, the strategy for
most underground assets is Run-to-Fail. There is normally no
possibility to inspect the assets visually, and it is too costly to

replace large parts of the network in advance or to place ad-
vanced monitoring systems throughout the grid.
In this paper an approach is proposed to rank underground ca-
bles and joints by their probability to fail. The key part is a
Machine Learning method that learns from previous outages
and data from the asset involved in the outage. The analysis
is performed on Alliander’s 42.000 km of MV and 74.000 km
of LV network. Alliander is the largest DSO in the Nether-
lands, which has almost all of its distribution network under-
ground. The analysis is performed on all of the individual ca-
bles and joints that were active between 2007 and the end of
2015. The philosophy and background of this approach is in
line with the approach used in the Machine Learning project
at ConEdison [2], [4], [5], [6]. There are, however, some im-
portant differences in the used data and the precise Machine
Learning method.
In this paper we will first describe the creation of the collection
of hypotheses of asset failures, which was the starting point in
the search for different dataset that could help to predict out-
ages. Following, the method to find the assets that have shown
an outage in the past is described. Afterwards, the benchmark
of different Machine Learning methods and its evaluation is
discussed. Finally, we show some of the results and first appli-
cations of the predictions of the model.

2 Hypothesis creation and data collection

It is well known what the dominant degradation processes are
for cables and joints [7], [8]. What is usually not known is
how the possibility of certain degradation processes effects the
probability of failure of an asset quantitatively. Equally im-
portant is that for almost all degradation processes not all the
relevant data is available. The information from domain ex-
perts and literature is therefore used to generate hypotheses
(see figure 1, step 1 and 2). These hypotheses are then used to
start looking for relevant and available data (3). For instance,
it is known that subsidence of the soil can cause bending of the
conductor which in turn can cause a short-circuit. However,
data about the exact subsidence of the soil is not available. Al-
liander currently only has a dataset that gives a classification
for the severity of the subsidence for each area, this classifica-
tion is a discrete number between 0 and 8. This dataset would
be unusable for a physical model, but it is usable for a Ma-
chine Learning approach. Loads are estimated via the method
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described in [3].

Fig. 1: Process diagram of the loop used for building and im-
proving Machine Learning models.

After the data sources have been selected and collected, it must
be interpreted, filtered, cleaned, transformed, scaled an cou-
pled in the right way (step 4). These step are obligatory to
create a dataset suitable for high-performance Machine Learn-
ing methods. Usually this step requires the most effort, and
it occurs often that findings later on in the process urge to re-
turn to the source data and domain experts to clarify certain
aspects. On the other side, investing in this part of the process
can hugely improve the resulting model, as is also stated in
[2]. After the Machine Learning step (5), results are evaluated,
creating an learning-loop for continuous improvement. The
current models are evaluated in different ways, and the results
and underlying data are visualised (6). Not only the perfor-
mance of the model matters, but also the relative importance
of the different parameters. These can be used to focus on the
most important data to be cleaned or improved. Finally, the
visualisation contains univariate plots of the relations between
the variables, the percentage of failed assets and the predicted
probability of failure, and maps of the assets with known and
unknown data. The visualisation of the data and results can
help to identify outliers and gaps in the data. Anti-causal rela-
tions, that are unwanted in the analysis, can be singled out.

3 Determining historical outages

A major challenge in the data processing step is the identifica-
tion of assets that have shown a failure in the past. This data
was not stored in the databases. The only geographical in-
formation that is available are the addresses from people who
made a phone call to Alliander to report the outage. Sometimes
some extra information about the location in the grid is avail-
able, e.g. the two MV substations between which an outage
has occurred. Furthermore, the date of the outage is known,
and some information about the type of asset involved in the
outage. This last information is known to be not fully reliable.
The search for the asset belonging to an outage is done by a
Asset-Blackout Connection(ABC) method. This method tries
to couple an outage to one or a few assets that were very

probably modified or removed due to an outage. As under-
ground electrical assets are mostly non-repairable after an out-
age, this has proven to be a relatively reliable method for find-
ing failed assets, as these modifications of assets are stored in
the database. Alliander keeps a monthly snapshot of all as-
sets in its database, including length, type, location and status.
Changes between these snapshots reveal the modifications of
the network. These changes can be due to outages, but most
changes are related to other construction works, such as creat-
ing more capacity or adding new customers to the network.

With the data of all these changes at hand, the search of assets
involved in an outage can be performed.

1. Start at a customer that called Alliander and reported an
outage, the extra information is also used here.

2. Search for changes in asset configuration data. This
search starts at the postal codes in which customers with
outages are located, then a geo-bounded box is drawn
around all customers with outages, and finally customer
connections are linked to sections and feeders (see fig. 2).

Usually there are many more changes within an area then only
the relevant ones, so the next steps are to filter the changes to
only keep the changes that are involved in an outage.

3. The first filtering step is done by keeping only changes
that are registered within 70 days after the outage, and
only assets that have been replaced by others and not have
been removed entirely.

4. The remaining changes are ranked in a system that as-
signs points for the different search methods that have
found this specific change and the validity of the asset
type according to the asset type description of the outage.
Finally the number of points is divided by the number of
assets found for a single outage. Only assets that surpass
a certain threshold are selected as failed. This threshold
is determined by applying the method to small validation
set of trusted ABC’s.

Fig. 2: Search for asset modifications (blue + orange) around
customers adresses (yellow) that are known to have
reported an outage. This is the geographical search
method that is used besides the postal code and a
method that uses the grid topology.
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4 Benchmarking Machine Learning methods

Now the target variable of failed assets has been set, Machine
Learning methods can be applied. Since a wide range of Ma-
chine Learning methods is available, and applying new ML al-
gorithms is relatively easy when a suitable dataset is available,
a benchmark is executed. The following Machine Learning
methods have been tested:

• Decision trees learning, which splits the data according to
the given variables in different parts and hereby creates a
tree to classify the data as failed or non-failed [9].

• Logistic Regression, which fits a generalised linear model
to the data [10].

• Random Forest, an ensemble model of decision trees on
subsets of the data and variables [11].

• HyperCube, an algorithm that divides the high-
dimensional space in hypercubes where the ratio of
failed/non-failed assets is high as possible [12].

• Support Vector Machines, that transforms the high-
dimensional space so that a linear model can be applied
[13].

• Neural Networks, that transforms the variable-space with
a single-hidden-layer [14].

These Machine Learning algorithms are all trained on the same
data, with the same parameters that could possible help to pre-
dict failed assets. The model evaluation is then performed on a
random selected test set that was not part of the train set. The
model predicts for each asset a probability of failure. After that
the assets are ordered according to their probability of failure.
The sensitivity is calculated as a measure of the model perfor-
mance. This measure, also called true positive rate, is defined
as

sensitivity =
number of true positives

total number of failed assets in testset
. (1)

This measurement is evaluated at different rates of the speci-
ficity or true negative rate, defined as

specificity =
number of true negatives

total number of nonfailed assets in testset
.

(2)
The ultimate aim is to have a sensitivity and specificity of both
100 %, but for realistic models there is a trade-off. One there-
fore wants to have high sensitivity and specificity rates com-
bined. For grid-operators, the most important thing is to be
able to implement measures such as replacement and moni-
toring as purposeful as possible. Therefore the model evalu-
ation is focussed on the Machine Learning methods to select
as many failed assets as possible while only allowed to select
a small part of the total asset population. This means that the
specificity has to be high. In this benchmark it is chosen to be
99%, 95% and 90%. Finally, the area under the ROC-curve,
which gives a measure of the total model performance, is cal-
culated [15]. The results are shown in table 1. It is clear that

Measure RF HC DT LR SVM NN
Sensitivity at 99% spec. 24% 13% 10% 5% 8% 8%
Sensitivity at 95% spec. 47% 29% 31% 23% 31% 29%
Sensitivity at 90% spec. 61% 45% 47% 39% 48% 49%
Area under ROC curve 88% 81% 80% 79% 82% 82%

Table 1: Benchmark of Machine Learning methods at a stan-
dardised and more balanced dataset. The sensitivity
at x% specificity is given, as is the total area under the
ROC-curve. The benchmarked methods are: Random
Forest (RF), HyperCube (HC), Decision Trees (DT),
Logistic Regression (LR), Support Vector Machines
(SVM) an Neural Networks (NN).

the Random Forest algorithm outperforms all other Machine
Learning methods on all measures evaluated. Apparently it is
most suited to combine many local effects in the 20 to 25 dif-
ferent variables. The number of variables varies for MV/LV
cables and joints. In total the algorithm creates 500 decision
trees, each tree uses only part of the assets (ca 68 %) and only
5 variables. The prediction for a new asset is the average of the
prediction of all these 500 trees. Because of the huge differ-
ence in model performance, the final model is chosen to be the
model build by the Random Forest algorithm.

4.1 Dealing with class imbalance

A problem that quickly arises when analysing grid outages
with Machine Learning techniques is the class imbalance be-
tween failed and non-failed assets. With the ABC-method it
was possible to couple circa 80% of the outages within to an
asset, but still this meant that only 0,4 % of the MV joints
in the dataset had shown an outage within the timewindow of
nine years. Most Machine Learning methods however, per-
form best on more balanced datasets. For instance, decision
trees will reach their minimum node size that is still statisti-
cally relevant only after a few splits. This problem could be
dealt with by creating a more balanced dataset out of the orig-
inal, and choose only one in twenty non-failed assets. There
are techniques available that can do this quite effective, for
instance SMOTE [16]. The best and most robust result were
received with Random Forest, that can deal with imbalanced
dataset more naturally. For each of the 500 trees it selects 68%
of the failed assets, and for each failed asset it picks 10 assets
that have not shown a failure. Because this is done 500 times,
the algorithm uses all assets multiple times, only the failed as-
sets are used more often than the non-failed ones. One has to
treat the predicted probabilities of failure with care, because
the absolute value is effected by this stratification.

5 Results and applications

The current result is a ranking according to the probability to
fail for each individual cable and joint in the MV an LV net-
work. According to the model performance checks, 25% to
35% of the outages are taking place in the 1% of the asset pop-
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ulation. In this procedure the results of the ABC-method have
to be assumed fully correct. With the available data it is thus
not possible to predict exactly where outages will occur next
year. It is however feasible to select areas in which the proba-
bility is much higher than others, instead of a Run-to-Fail pol-
icy for every asset. This result can be used for a wide range of
applications.

At Alliander the asset ranking as outcome of the Machine
Learning model is currently in use to optimally place an online
monitoring system in the MV network. This system, called
Smart Cable Guard [17], monitors the number and size of par-
tial discharges of MV cable circuits. By measuring the partial
discharges, the occurrence of failures can be eventually pre-
dicted and prevented. When combining the frequency of fail-
ure with the number of customers effected by a possible failure,
a risk based selection of cable circuits can be made. At Allian-
der a first version of an application (see fig. 3) is in use. In this
application, operators can select cable circuits that are at high
risk according to the predictions. They are provided with some
extra information, such as the type of installation at the MV
substations, and the cable configuration, which are needed as
boundary conditions to place a Smart Cable Guard system.

Fig. 3: Sample of the map of the grid health that is in use to
place an online monitoring system. The MV substa-
tions are shown as blue squares, the colours of the con-
nections are related to the probability of failure, darker
red means worse.

6 Conclusions

A Machine Learning method for the ranking of underground
distribution cables and joints is built and implemented. Critical
steps were cleaning and coupling the data, a separate model to
determine the assets that have failed in the past had to be con-
structed. Via benchmarks the best algorithm to construct mod-
els is selected. The models are capable of selecting parts of
the asset population in which the probability of failure is more
than an order of magnitude higher than the average. These
models can be used to prioritize preventive measures such as
the positioning of an online monitoring system or proactive re-
placement of vulnerable assets.
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