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ABSTRACT 

Increased interest in the analysis of low voltage (LV) 

power distribution networks using probabilistic and long 

period time-series techniques has arisen due to the 

anticipated growth of low-carbon technology and the 

advent of the Smart Grid.  Recent approaches are 

reviewed and the uncertainty introduced by the underlying 

assumptions explored.  A specific case study analysis of 

electric vehicle (EV) penetration on a generic UK 

distribution network is used to investigate the effect of key 

assumptions on the results of a probabilistic analysis.   

INTRODUCTION 

In response to the predicted increase of low carbon 

technology that will primarily interact with the low voltage 

(LV) network, techniques for detailed analysis of LV 

networks are receiving increased attention.  Scenarios of 

high penetrations of micro-generation, plug–in electric 

vehicles and electric space and water heating, possibly 

with a flexible price response or even direct control, would 

create a situation requiring new approaches to LV 

planning [1].   

The stochastic nature of LV customer load profiles and 

DER behavior has driven increased interest in 

probabilistic and long period time-series load flow 

techniques.   Rather than a worst case scenario analysis 

this approach provides information on the probabilities of 

attributes such as network constraints and system losses 

that would then form the basis of planning decisions. 

In this paper, approaches to probabilistic LV network 

analysis are considered and a case study of varying 

penetrations of EV on a generic UK network used to 

explore the effect of key assumptions. 

LV ANALYSIS 

The starting point for any power system analysis is the 

network model.  For low voltage distribution networks, the 

general assumptions do not apply; lines are rarely 

transposed and the effects of diversity and aggregation 

have yet to influence the inherently unbalanced load 

profiles of individual consumers with single phase 

connections.  In addition to this, connections may not be 

evenly balanced across the phases, exacerbating the 

unbalanced load problem. 

Although a fully accurate model can only be derived using 

Carson‟s equations [2], where detailed network 

information is not available it has been demonstrated that 

deriving an approximate phase impedance matrix from 

positive and zero sequence impedance values will 

introduce negligible error providing further simplifications 

of assumed balance or neglecting mutual coupling are not 

made [3].  

With an appropriate network model in place, an 

unbalanced load flow engine is required.  The extensive 

prior art in this area describes a variety of methodologies 

including the Backward Forward Sweep (BFS) approach 

[4] and specific formulations of the Newton Raphson 

method [5].  The BFS technique provides an easy to 

implement, fast and accurate solution for weakly-meshed 

systems.  However, for larger, strongly meshed systems a 

Newton Raphson formulation such as the Current Injection 

Method has been shown to perform well [6]. 

A probabilistic analysis also requires time-series load 

information which, when described at an individual 

customer level in highly granular time steps, is highly 

stochastic. The literature provides multiple examples of 

the different approaches that can be taken to creating 

synthetic load profiles for a probabilistic analysis [7], [8], 

[9], [10]. The methods vary between studies, however the 

majority are similar in that an existing data set (historical 

substation data or typical, averaged annual customer 

profiles) was used with a probabilistic method to randomly 

assign individual customer profiles.  In a few cases high 

resolution load profiles are built directly from occupancy 

and appliance use probabilities per dwelling.  

Underlying all of these studies is some level of assumption 

or simplification regarding one or all of: network 

parameters, balanced conditions and customer load profile 

through time.  In the majority of cases it is not clear how 

an alternative set of assumptions on the network model, or 

method of generating synthetic load profiles, would affect 

the results of the study. 

CASE STUDY 

A case study network has been modeled to allow an 

analysis of a typical probabilistic approach to LV analysis 

that explores the underlying assumptions involved. 

The network is modeled in Matlab and a three-phase 

unbalanced load flow algorithm based on [4] is used for 

steady state power flow analysis.  The simulation records 

any over/under voltage or excess phase imbalance at each 

node in the network for each half-hourly load flow 

solution.  All branch currents are monitored for thermal 

violations.  The load flow accuracy was verified by 

comparison against a commercial package and EPRI‟s 

OpenDSS [11].   
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Network Model 

A generic urban UK LV network is used as the case study 

network (shown in Fig. 1.). The network is fed by a 1.2 

MVA 11/0.4 kV transformer and has 83 nodes with 44 of 

those connecting domestic load.  The model is full three 

phase however the single phase service connections are 

not modeled and are aggregated at each load node. Six 

nodes connect commercial loads. As is often the case, the 

data available provides positive sequence impedance 

values only.  For underground three-core cables, a 

common approach is to multiply positive sequence 

impedance by a factor of between three and five to 

estimate the zero sequence impedances [12].  Initially a 

factor of three has been assumed and the positive and zero 

sequence data used to form approximate phase impedance 

matrices.  

 

 
Fig. 1.  Case Study LV Network 

 

Synthetic Load Profiles 

Three sources of customer load profiles have been 

considered: UKERC [13], UKGDS [14] and CREST [15]. 

 The first two provide half hourly averaged profiles for 

typical customer classes over the course of a year.  Open 

source software developed by CREST builds individual 

profiles directly from assumptions on occupancy and 

appliance use.  Each source was used to create a base set 

of random node load profiles reflecting differing 

occupancy and appliance use.  For each node, at each half 

hourly sample point, a normal probability distribution is 

created around the sample value with  chosen so that 

99.7% of the distribution is within 15% of the original 

value.  At each half hour of the power flow simulation 

each load‟s pdf for that half hour is sampled.  This process 

results in appropriately stochastic, „spiky‟ individual, 

single-phase customer profiles that aggregate to the 

expected smooth profile and peak values at the 

transformer.  The profiles vary randomly through each 

iteration and by their stochastic single phase nature, 

introduce random unbalance across the phases.   

Electric Vehicle profiles were generated using a Monte 

Carlo Simulation model of domestic Electric Vehicle use 

and availability based on probabilistic characterizations 

obtained from the 2003 UK Time of Use Survey [16].  

Simulations for 20%, 30% and 50% penetration of EV for 

the case study customer base were undertaken and the 

resulting charging profiles randomly assigned to domestic 

customer nodes.  The EV type simulated was assumed to 

have a constant charging rate of 7.68kW.   

Methodology 

The base case simulation utilized the UKERC load 

profiles and assumed zero sequence impedances equal to 

three times positive sequence impedances.  Multiple 

scenarios were analysed with the zero sequence impedance 

varied to four and then five times the positive sequence 

impedance and alternative load profile sources used to 

create synthetic profiles. Each simulation consisted of 100 

runs of annual analysis.  Each of these simulations was 

then repeated for 20%, 30% and 50% EV penetration 

levels. 

Results 

The simulation results return a likelihood of the load flow 

solution at any time step identifying voltage, thermal or 

unbalance constraint violations at all nodes.  A selection of 

results for all EV penetration scenarios are shown in Table 

1.  The data is displayed as Voltage (% of periods in year 

with voltage threshold violated), Unbalance (% of periods 

in year with unbalance threshold violated), Max Thermal 

(maximum % of current rating occurring at any branch 

over all periods) and Min Voltage (minimum per unit 

voltage occurring at any node over all periods).  The 

maximum thermal loading for all simulations occurred at 

the transformer.  The assumptions on zero sequence 

impedance have a clear impact on the probability of 

over/under voltage and unbalance threshold violations.  

The alternative load profiles have varying impact.  Using 

UKGDS load data significantly changes the predicted 

constraints and maximum thermal loading observed whilst 

the profiles created from CREST and UKERC data (base 

scenario) track quite closely. 

System wide probabilities of constraint violations provide 

a useful high level view of network performance under 

various scenarios, however a more detailed understanding 

of the network‟s weak points may be required.  The 

probabilities of voltage threshold violations for individual 

nodes for 50% EV penetration are shown in Fig. 2. for 

both UKERC and CREST load profile sources. 
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TABLE I 

PROBABILITIES OF CONSTRAINT VIOLATIONS FOR VARYING  

ASSUMPTIONS AND EV PENETRATIONS 

 

STANDARD 

LOAD 
BASE Z0 X5 UKGDS CREST 

VOLTAGE 0.01% 0.02% 2.30% 0.01% 

UNBALANCE 0.69% 3.24% 2.98% 0.73% 

MAX 

THERMAL 88.3% 91.2% 102.2% 84.43% 

MIN VOLTAGE 0.9369 0.9317 0.9267 0.939 

20% EV BASE Z0 X5 UKGDS CREST 

VOLTAGE 1.45% 6.54% 10.09% 0.68% 

UNBALANCE 13.7% 33.6% 17.65% 12.42% 

MAX 

THERMAL 90.1% 89.7% 102.5% 83.89% 

MIN VOLTAGE 0.9237 0.8899 0.901 0.928 

30% EV BASE Z0 X5 UKGDS CREST 

VOLTAGE 2.86% 7.99% 12.30% 1.52% 

UNBALANCE 19.1% 42.8% 23.31% 20.05% 

MAX 

THERMAL 90.8% 90.0% 103.9% 84.53% 

MIN VOLTAGE 0.9084 0.887 0.900 0.924 

50% EV BASE Z0 X5 UKGDS CREST 

VOLTAGE 8.75% 18.9% 20.07% 6.98% 

UNBALANCE 33.1% 53.9% 34.64% 31.23% 

MAX 

THERMAL 91.2% 93.3% 101.4% 88.37% 

MIN VOLTAGE 0.897 0.8738 0.8894 0.9 

 

A full analysis of results indicates a pattern that is 

consistent in across all scenarios.  It can be seen that 

assumptions on zero sequence impedance and load 

profiling change the magnitude of the probability of 

voltage violations but not the specific nodes where 

violations take place. In all scenarios, nodes 23, 32, 33, 

40, 46, 52 and 59 experience the most constraint 

violations.  Fig. 2 provides an example of this pattern for 

UKERC and CREST 50% EV scenearios. 

 

 
Fig. 2.  Probability of voltage violations per node for varying load 

assumptions and 50% EV penetration 

 

An understanding of the overal probabilities of various 

constraints provides an indication of weak areas of the 

network, however an understanding of when these 

constraints are most likely to occur provides additional 

value.  In Fig. 3. the probabilities of voltage constraint 

violations occuring at peak hours in different seasons are 

compared for 30% and 50% EV penetration and UKERC 

and CREST sourced synthetic load data.  As would be 

expected, winter peak hours dominate the periods when 

constraints occur, however this is not exclusive and the 

load profile assumptions affect the level of dominance. 

 

 
Fig. 3.  Probability of voltage violations at seasonal peak hours for varying 

load assumptions and EV penetrations 

 

The half hourly comparison indicates that although winter 

peak times see a majority of constraint violations, this 

trend is stronger for the UKERC synthetic data (with 

violations ranging from 50% to 22%) as CREST results 

only range from 24% to 21%.  For both synthetic data 

sources, the proportion of constraint violations occurring 

during winter peak hours decreases for higher penetrations 

of EV (although overall the probability of voltage 

constraint violations increases) indicating that winter peak 

hours may not continue to be the worst case scenario.  

Despite this common trend, and although the UKERC and 

CREST results track closely for a system level analysis, a 

significant difference can be seen in the detailed predicted 

times of constraint violations. 

CONCLUSIONS AND FUTURE WORK 

The probabilistic approach to LV analysis relies heavily 

on assumptions relating to the network model and the 

predicted customer load profiles.  The analysis presented 

here indicates that key assumptions significantly affect the 

predicted probabilities of constraints throughout the case 

study network.  

Taking the underlying assumptions into account, the 

results in the presented case study still appear to provide a 

level of confidence in some general conclusions on EV 

penetration.  Weak points in the network were identified 

due to the increased load of EV charging with specific 

nodes on one radial branch consistently experiencing 

higher probabilities of voltage constraint violations.  These 

violations frequently occurred during peak hours, however 

the source of base customer load profile data significantly 

affected the concentration. 
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In is noted that, regardless of the customer load profile 

source, with increasing EV penetration constraint 

violations become less concentrated in traditional peak 

hours. These results imply that characteristic vehicle 

ownership and driving behavior will naturally incur 

significant levels of charging outside traditional peak 

hours. With typical price response schemes often designed 

to shift demand from traditional peak times or to 

incentivize increased demand during times of high 

renewable generation output [17], this study indicates that 

it cannot be assumed a network with high EV penetration 

would have the capacity to cope with such a shift in 

demand.  In the case study presented here, the result would 

be increased EV charging during non-peak periods that 

already experience high probabilities of voltage constraint 

violations. 

These general conclusions provide a useful insight to a 

particular scenario of EV penetration on the case study 

network, however the large disparity in the predicted 

probabilities of constraints between scenarios prevents 

specific detailed conclusions being drawn.  For planning 

questions that require a reliable prediction of nodal 

constraint violations at specific times a thorough 

sensitivity analysis is required to understand the 

uncertainty introduced by these assumptions.  The level of 

assumptions may vary for particular applications and the 

data available (or work required to obtain that data) may 

dictate how appropriate a probabilistic planning approach 

may be. 

The anticipated availability of smart meter data is 

expected to allow highly accurate forecasting of customer 

load profiles, however timescales for the availability, and 

the arrangements for access to, this data are unclear.  In 

the absence of smart meter data, a probabilistic, stochastic 

approach to LV analysis using typical averaged profiles, or 

indeed relevant transformer profiles, provides a powerful 

method of understanding likely future operating 

conditions; however, as demonstrated here, the choice of 

source profile will significantly affect the results and needs 

careful verification. 

Future work will study these issues on other generic and 

real distribution networks, comparing various methods of 

generating synthetic load profiles and considering methods 

of identifying appropriate levels of assumption for 

particular planning applications.  
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