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ABSTRACT 

The increased deployment of low-carbon technology and 

the anticipated impact on low voltage (LV) networks has 

led to a requirement for more detailed analysis and new 

planning methods for LV networks.  This paper discusses 

the likely functionality required by a probabilistic LV 

planning framework that incorporates the stochastic 

characteristics of customer load. This facilitates the 

development and assessment of DNO led Demand Side 

Management schemes. 

INTRODUCTION 

Low voltage network design and planning in the UK is 

primarily concerned with providing a secure, good quality 

supply and relies on the techniques of After Diversity 

Maximum Demand (ADMD) and the „statistical method‟ 

for estimating load demand. 

Planning and operating distribution networks with 

increased levels of low-carbon technology and customer 

participation requires detailed distribution system analysis 

that allows the effects of distributed energy resources and 

proposed control methodologies to be investigated at all 

levels of the network [1].  For example, identifying the 

time and size of peak load on an LV feeder containing 

Electric Vehicles (EV), Heat Pumps, solar photovoltaic 

(PV) generation, combined heat and power generation 

(CHP) and thermal storage could be a considerable 

challenge.  A planning approach that allows detailed 

analysis of phase unbalance and voltage/thermal 

constraints will be required.  In addition, should there be 

varying degrees of control that could dispatch these 

Distributed Energy Resources (DER) in response to local 

or system events or market signals, additional uncertainty 

is added to the planning problem if anything but the most 

conservative, risk-averse approach was taken. 

Instead of a worst case scenarios analysis, probabilistic 

and long period times-series load flow techniques are 

being increasingly used to capture the stochastic nature of 

customer load profiles and DER behavior. 

DEVELOPING AN LV PLANNING 

FRAMEWORK 

When considering long-term planning of LV networks, 

new approaches need to be found to simulate the likely 

operating conditions.  Scenario analysis provides a method 

of analyzing possible future operating conditions and 

assessing the ability of an LV network area to cope in 

those conditions.  A planning framework that allows  

 

stochastic/probabilistic analysis (with a well understood 

degree of accuracy) of an LV network under any proposed 

scenario of EV, electric thermal loads, flexible tariffs and 

load control by 3
rd

 parties, for example, would provide a 

spatial and temporal probabilistic view of the network 

operating conditions and allow weaknesses to be 

identified. 

The following sections outline some key components of 

such a planning framework. 

 

Synthetic load profiles 

With the advent of smart metering, vastly improved load 

data is expected to become available over time.  Access to 

detailed historical data will facilitate forecasting of 

expected customer load profiles, however timescales for 

smart meter delivery and hence the availability and 

granularity of this data is currently unclear in the UK. At 

present when considering studies of LV, transformer load 

profiles or averaged customer annual profiles are generally 

available.  Various methods of creating synthetic 

individual profiles from these aggregated profiles have 

been utilized [2], [3], [4], [5].  An alternative approach is 

to derive individual profiles from assumptions on 

occupancy and appliance use [6]. It is logical that the load 

data will significantly affect the results of a study and a 

level of confidence would be required in the predicted 

customer load profiles.  

 

Network Model 

Underlying any load flow study is the network model.  For 

low voltage distribution networks, the general assumptions 

do not apply; lines are rarely transposed and the effects of 

diversity and aggregation have yet to influence the 

inherently unbalanced load profiles of individual 

consumers. These single phase connections could also be 

unbalanced across the phases. 

The most accurate method of modeling distribution lines is 

via Carson‟s equations using the basic physical 

characteristics of the cables and the separation distances 

[7].  Commonly, such detailed network information is not 

available, however it has been demonstrated that deriving 

an approximate phase impedance matrix from positive and 

zero sequence impedance values will introduce negligible 

error as long as further assumptions on balanced load or 

mutual coupling are not made [8], [9].  

 

Load Flow Engine 

The standard Newton and Gauss methods perform poorly 

when applied to LV networks as they do not exploit any 

radial nature of the network and require the solution of a 
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set of equations to the order of the number of buses [10].  

Specific distribution system load flow algorithms have 

been developed to address these issues and to allow three 

phase analysis [11].  There is an extensive prior art in this 

area ranging from applications of the ladder technique to 

modified Newton Raphson methods. For weakly meshed 

systems, methods based on the ladder technique perform 

well, however for larger, strongly meshed systems, 

modified Newton Raphson methods have been shown to 

be more suitable [12]. 

An alternative to implementing a load flow within a 

planning framework would be the use of an existing 

package.  Commercial packages with unbalanced solvers 

and scripting capability could be integrated, however the 

lack of access to the source code may be an issue.  

Alternatively, EPRI‟s openDSS provides an open source 

engine with a COM interface [13]. 

 

Integrating Control 

Demand Side Management (DSM) is an area of significant 

research and many methods of controlling customer point 

of connection load have been presented in the literature 

[14], [15].  These include price arrangements, optimizing 

charging of electric vehicles and frequency response of 

white goods.  Any proposed scheme that does not fully 

consider LV network constraints in its scheduling or 

optimization algorithms must be evaluated in terms of its 

impact on the network.  A planning framework must be 

able to incorporate any proposed control that will 

influence the behavior of load and provide an 

understanding of how this will affect the state of the 

network.   

From a DNO perspective, based on a probabilistic 

analysis, the likely need for intervention can be 

established.  When unacceptable operating conditions are 

predicted, solutions can then be assessed.  The probable 

spatial and temporal weak points can be identified and will 

form the minimum requirements that any DNO led DSM 

action must address.   

CASE STUDY ANALYSIS 

A case study is presented to inform the discussion areas 

outlined above.  A simulation tool has been developed in 

Matlab that forms the three-phase network model from 

positive and zero sequence network data, creates 

individual customer stochastic load profiles and computes 

the load flow solution for each time step.  A three-phase 

unbalanced load flow algorithm based on [16] is used for 

steady state power flow analysis.  The load flow accuracy 

was verified by comparison against a commercial package 

and EPRI‟s OpenDSS.   

Network Model 

A generic urban UK LV network is used as the case study 

network (shown in Fig. 1.).  As is commonly the case, the 

data available provided positive sequence impedance 

values only.    In the absence of zero sequence data, 

approximations are often used where the positive sequence 

impedance is multiplied by a factor of between three and 

five to estimate the zero sequence impedances [17].  

Initially a factor of three has been assumed for the case 

study network. 

 

 
Fig. 1.  Case Study LV Network 

 

The network has 83 nodes, and a 1.2 MVA 11/0.4 kV 

transformer. Fifty nodes have connected load.  Forty four 

nodes connect a total of 396 domestic customers. Six 

nodes connect commercial loads. The simulation records 

any over/under voltage or excess phase imbalance at each 

node in the network for each half-hour.  All branch 

currents are monitored for thermal violations. 

Creating synthetic load profiles 

Three sources of customer load profile data have been 

considered, CREST [6], UKERC [18] and UKGDS [19] 

and two methods of creating synthetic data compared.  

Individual customer profiles are created from an average 

profile to reflect differing occupancy and appliance use.  A 

probability distribution of the likely load value for that 

customer is created for each time step.  At each time step 

of the power flow simulation each load‟s pdf for that time 

step is sampled.  

EV load profiles were simulated using the technique in 

[20].  Simulations for 20%, 30% and 50% penetration of 

EV for the case study customer base were undertaken and 

the resulting charging profiles randomly assigned to 

domestic customer nodes.  The EV type simulated was 

assumed to have a constant charging rate of 7.68kW. 

To capture the probabilistic nature of the load profiles and 

cover a sufficient range of the possible load values at each 

node at each time step, a base case simulation comprised 

100 runs of annual analysis. 
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Understanding the assumptions 

In [21] the authors discuss the underlying assumptions of a 

probabilistic LV analysis and the need to represent these in 

the results of such analysis.  Various scenarios of network 

data and load profile assumptions are analysed and it is 

noted that assumptions on zero sequence impedance have 

a minimal effect on the base case scenario but as EV 

penetration increases, the probabilities of voltage 

constraint violations increase considerably.  As would be 

expected, the synthetic load data has a significant effect on 

the results.  Despite disparity in overall probabilities 

between synthetic load data sources, specific nodes on one 

radial branch consistently experienced higher probabilities 

of voltage constraint violations due to EV charging. 

Integrating control 

In order to investigate the impact of demand control, a 

simple heuristic algorithm has been applied that delays EV 

charging in response to network constraints.  The base 

case probabilistic analysis indicates likely constraints 

occurring in response to EV charging behavior.  In 

response, at any time step where a constraint is predicted, 

the algorithm searches the radial branches of the network 

and identifies the EV affecting the constrained nodes.  The 

algorithm then steps through each of those EV in turn; 

delaying their charging by one time step until the 

constraints are resolved or all EV charging has been 

delayed.  The results in Fig.2. show at least a 50% 

reduction in predicted overall probability of voltage 

constraints per node.   

 

 
Fig. 2. Comparison of overall voltage constraint probabilities for 

30%EV penetration with and without demand control. 

 

A view of when constraints will occur at particular nodes 

provides an extra level of granularity.  Fig.3 shows the 

results at 18:30 on a Winter Monday.  The majority of 

nodes have their probability of constraint reduced by the 

shift in EV charging, however the high probability for 

nodes 46, 55, 56 and 63 are unaffected. 

This fairly simple example demonstrates the way in which 

a proposed control scheme can be evaluated.  This could 

be applied to either direct control or price response 

schemes.  The anticipated change in behavior can be 

simulated and the ability of the LV network to facilitate 

this could be predicted.   

 

 
Fig. 3. Comparison of one half hour‟s voltage constraint probabilities 

for 30%EV penetration with and without demand control. 

 

Assessing demand control resource 

By integrating an assessment of demand control into the 

framework, the ability to assess potential demand control 

resource within an LV area is enabled.  For wider network 

management applications such as Active Network 

Management or frequency response schemes, this would 

provide a probabilistic view of the potential level of 

resource available at particular times and provide a view 

of non-DNO demand management able to be 

accommodated within network constraints. 

In the case study, this idea is explored by analyzing the 

scope of delaying EV charging without incurring network 

constraints.  An algorithm has been implemented to assess 

the network in terms of the potential EV charging demand 

that could be delayed per half hourly time step.  The 

results for a Winter Friday are shown in Fig 4.   

 

 
Fig. 4. Average predicted demand resource for a 30%EV penetration 

scenario on a Winter Friday. 

 

The algorithm operates by assessing the system wide EV 

charging state for each time step.  All EV charging is 

shifted by one time step and the potential constraints 

calculated.  If this action is found to cause constraints, the 

demand control heuristic described above is used to 
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 reduce the number of EV shifted until no constraints are 

observed.  This allows the maximum possible demand 

control action for that time step to be identified.  Using the 

probabilistic approach over 100 iterations of analysis, an 

average predicted demand resource is found.  Clusters of 

potential demand resource up to 40kW can be seen in the 

morning, afternoon and the late evening.  It is noticeable 

that no demand resource is predicted during peak hours. 

CONCLUSIONS AND FUTURE WORK 

LV modeling techniques have been reviewed and the 

requirements of an LV planning framework examined.   

The probabilistic case study analysis has highlighted the 

need for thorough sensitivity analysis around network 

modeling and load assumptions.  The results indicate that, 

working within an understanding of these assumptions, 

some general conclusions can be drawn on the likely weak 

areas of a network.  The need to integrate potential control 

actions into the planning analysis has been demonstrated.  

The case study results indicate that relatively simple 

demand control actions that operate within network 

constraints can significantly reduce probabilities of voltage 

constraints and that the probabilistic approach can be used 

to assess the potential demand management resource 

available within an LV network area. 

The planning framework will be developed further to 

include electric space and water heating, more granular 

time step analysis, and supplier-led DSM schemes in order 

to further explore the application and value of probabilistic 

analysis to LV networks.  Advanced load control 

techniques will be developed to analyse the need for, 

operation of, and value provided by DNO led Demand 

Side Management. 
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