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ABSTRACT 

An important component in the modernization of 

electrical grid infrastructure is the increasing 

production of energy from renewable distributed 

generation sources. However, the intermittency of this 

generation motivates stochastic optimization to address 

uncertainty, and an adequate system of reserves. This 

paper investigates the stochastic optimization of a two-

tiered distribution reserve system for congestion 

management. 

INTRODUCTION 

The utilization of renewable energy technologies for 

expansion of the electrical energy infrastructure is a 

vital component of future energy scenarios. The societal 

benefits created through the use of carbon-free 

renewable energy technologies, when considered in 

parallel with long-term increases in the costs of fossil 

fuels and the low marginal energy production costs of 

renewable sources, ensures a continuous expansion of 

renewable energy integration. While the benefits of 

increasing renewable energy generation are readily 

identifiable, there are certain additional challenges 

inherent to these technologies which must be addressed 

to maintain secure and economically-efficient operation 

of the network. 

The power generated by renewable energy sources is 

intrinsically uncontrollable, which implies that the 

power output of these sources cannot be dispatched 

when a modification of the generation schedule is 

necessary, nor can the power generated by these sources 

be predicted with complete certainty [1]. At low 

penetration levels, the small amount of implied 

uncertainty poses little threat to the stability of the 

system. However, with the expected proportional 

increase in generation coming from renewable sources, 

this uncertainty in generation must be adequately 

anticipated and planned for to avoid a failure in system 

security. Addressing the non-dispatchable and 

unpredictable nature of renewable generation requires a 

more sophisticated technique for congestion 

management. [2] 

For such cases, it is important to consider not only the 

expected deterministic power generation forecast of the 

renewable sources, but also to take into account the 

potential stochastic variation in the power output [3-5]. 

The uncertainty in the generation of the renewable 

sources will inevitably require that a stochastic optimal 

power flow solution be applied to adequately prepare 

for such uncertainties through the provision of 

reserve[6]. In the case of a distribution system, these 

reserves will be provided through vehicle-to-grid 

services and any additional local electrical storage. 

This paper investigates the optimal scheduling of a two-

tiered distribution grid reserve system to alleviate any 

network stress caused by the unpredictable output of the 

renewables integrated within the distribution network 

[7]. Based on the probabilistic nature of the renewable 

generation, the scheduling algorithm will seek to 

determine the proper amount of pre-purchased reserve 

capacity, as well as the amount of additional balancing 

reserve which may need to be purchased in real-time. It 

will be shown that the proposed algorithm can be 

utilized to develop a schedule to maximize the expected 

economic benefit while preventing network congestion. 

Additionally, the algorithm may be used to analyze the 

increased costs of energy delivery given the level of 

uncertainty. 

PROBLEM FORMULATION 

The fundamental objective in obtaining an optimal 

solution for the scheduling of active distribution 

network resources is to determine the schedule which 

will minimize the cost of grid operation. The algorithm 

utilized to determine the optimal schedule will seek to 

minimize expenditures and maximize profits during grid 

operation, thus leading to the most cost effective 

solution. Within a practical distribution network, a 

number of physical limitations are present which 

constrain the optimal schedule, and which must be 

accounted for during optimization. 

In order to address the needs of such an optimization, a 

nonlinear constrained optimization problem must be 

formed which accurately portrays the power demands, 

generation sources, active network resources, and 

binding network constraints. In its most general form, 

the equations which comprise the nonlinear constrained 

optimization problem can be written as  

                  

                    

             
 where the function       is the cost function which 

serves as the minimization objective of the algorithm, 

     is the set of equality constraints, and      is the set 

of inequality constraints applied during optimization. 

The variable vectors   and   contain the node voltage 

magnitudes and phase-angles of the node voltages 

respectively, and the decision variable vector   contains 

all other decision variables, including but not limited to 

shiftable load scheduling, vehicle-to-grid scheduling, 

and load/generation curtailment. 
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While a large portion of the constraints utilized in the 

optimization are linear constraints, the set of constraints 

which govern the power flow equation and maximum 

apparent power through a line are inherently nonlinear, 

and necessitate the use of an optimization algorithm 

which can incorporate such constraints. The set of 

power flow constraints belong to the constraint set     , 

and are defined as  

                
 where      is net power flow to node  , whereas the 

constraints applied to the maximum apparent power in a 

line belong to the set of inequality constraints     , and 

are defined as  

                     
 where    is the nonlinear function determining apparent 

power flow in line  , and        is the maximum 

allowed apparent power in the given line. The inclusion 

of these nonlinear constraints is necessary for obtaining 

an optimum solution that adheres to the physical 

behavior of the distribution network, but nonlinear 

constraints place a significant computational burden on 

the optimization, and should be minimized if at all 

possible. A reduction in the quantity of nonlinear 

constraints can be achieved through a network 

aggregation procedure. 

To properly account for the probable discrepancy 

between the predicted amount of renewable generation 

and the actual generation, it is important to include not 

only the predicted renewable generation schedule in the 

optimization, but also include stochastic elements 

within the optimization. First, the optimization should 

ensure that none of the system constraints are violated 

over the entire range of possible variations in 

generation, thus guaranteeing feasibility. Second, the 

stochastic properties of the renewable generation should 

be included into the optimization to determine the 

schedule which will maximize the expected profit. 

Incorporating the stochastic uncertainty of renewable 

generation can be accomplished through an expansion 

to the formulation of the optimization problem, which 

will now include the parallel simulation of multiple 

generation scenarios with varying probabilities of 

occurrence. Thus, the optimization will  

now take the form 

                  

                                  

                          

where    and    are the sets of equality and inequality 

constraints respectively, expanded to include the set of 

   potential renewable generation scenarios. The 

subscript   indicates which of the scenarios the 

constraint is associated with, where     is the 

expected base case scenario, and          indicate 

scenarios with stochastic variation from the base case. 

Additionally, the cost function is modified to 

incorporate the stochastic uncertainty, reformulating it 

as the weighted sum of the individual scenario cost 

functions, and becomes  

            
  
                ) 

where the weight values    are the probability of 

occurrence for a given scenario  , and         is the cost 

function for the individual scenario. Utilizing an 

optimization structure of this form enables the inclusion 

 

 
Figure  1: 58-node example distribution system utilized 

for testing of the proposed algorithm. 

 

of stochastic uncertainty in the optimization, but it is 

readily apparent that the number of constraints in the 

optimization increases by a factor of    at a minimum, 

since each scenario requires a duplicate of the original 

constraints. Additionally, there may be further 

constraints added to the optimization due to the parallel 

stochastic scenarios, where the new constraints govern 

the interactions between the various scenarios. 

SIMULATION EXAMPLE 

The proposed methodology is applied here to simulate 

an example 58-node distribution test network [9] shown 

in Fig. 1, in order to determine the optimal resource 

schedule. For the given test case, a preliminary 

aggregation procedure is applied to determine the set of 

possible binding constraints. In this example, only the 

two parallel substation transformers were found to be at 

risk of violating the maximum apparent power 

constraint, and so the distribution network is aggregated 

to form the reduced-order network on which the 

optimization will be performed. 

Within the reduced network, the deterministic 

components remaining are the load demands and an 

aggregated loss component. The stochastic element 

within the aggregated network is a wind farm, and the 

active resource to be optimized is the acquisition and 

deployment of vehicle-to-grid reserves. For this test 

case, the vehicle-to-grid reserve is implemented as a 

two-tier system, where reserve capacity can be 

purchased in advance in preparation for a potential 

generation shortage, and additional balancing reserves 
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can be purchased in real time to address any generation 

discrepancy, though the purchase of real time balancing 

reserves will come at an economic premium.   

 
Figure  2: Segmented probability distribution chart 

displaying how the probability and variance of the 

scenarios are generated from a Gaussian distribution. 

   

The stochastic uncertainty of the wind farm generation 

is incorporated into the optimization by first generating 

an hourly prediction of the expected generation 

schedule, and then defining a set of probabilistic 

scenarios related to this expectation. To establish the 

probability of the base case scenario   , the error in the 

prediction is assumed to be Gaussian and the error 

function is utilized to calculate the probability as  

        
         

   
   

 where        is the maximum power generation 

capability of the wind farm,    is the width of the band 

(in percentage of       ) over which the base case 

scenario is presumed to be an accurate prediction, and   

is the standard deviation of the stochastic prediction of 

the wind farm generation. 

The non-base-case scenarios are characterized by 

selecting a confidence interval step size      , and 

subsequently utilizing the inverse error function to 

determine the deviation from the expected generation 

for the probability interval for a given scenario as  

                          

where the inverse error function yields that the variation 

in the wind farm generation output will fall within    

standard deviations of the expected value with a 

probability of            , and    is an integer 

multiple of      . This procedure is completed for all 

scenarios, such that a discrete set of potential stochastic 

variations in generation and their corresponding 

probabilities are determined, as shown in Fig. 2. 

This characterization of the renewable generation 

uncertainty yields the set of weighting probabilities    

which are utilized in the cost function (9), and the 

corresponding variations in generation output. This 

probabilistic characterization can only be utilized 

effectively as an optimization input if there is a resource 

within the system which can respond to such variations. 

For this case, the distribution network responds to the 

variable windpower output through the provision of 

vehicle-to-grid reserve. 

The two-tier reserve system used here places additional 

constraints on the optimization algorithm in order to 

govern the reserve purchasing, where the set of 

constraints  

                     

 is included to ensure that the amount of reserve 

capacity purchased     is identical in all scenarios. The 

rationale behind this constraint set is that in order for 

this reserve capacity to be available in any of the 

scenarios, it must be purchased in advance, and thus its 

cost must be incurred within all scenarios regardless of 

whether the reserves are deployed. Alternatively, 

balancing reserve can be purchased in real-time on a 

per-scenario basis at an elevated cost. This adds no 

inter-scenario constraints, but places a financial penalty 

on utilizing balancing reserves. 

With the costs and constraints of the two-tier reserve 

system defined, the optimization seeks to determine the 

reserve purchase schedule which will maximize the 

expected profit. When accounting for stochastic 

variation in generation, the expanded optimization will 

maximize the expected benefit through a blend of 

reserve purchases from within the two-tiers.  

 
Figure  3: Comparison of expected cost of reserve 

acquisition with varying accuracy of wind power 

forecast. The case displayed here shows the cost 

comparison for a 5:1 price ratio between balancing 

reserve and reserve capacity.  

 

An example case utilizing the stochastic optimization is 

displayed in Fig. 3, where the cost of reserve purchases 

is shown relative to variance in the wind generation 

forecast. It is apparent that a decrease in the accuracy of 

the predicted renewable generation is equivalent to an 

increased variance in the prediction, which inevitably 

leads to an increase in reserve purchase costs. However, 

from this example it is seen that when stochastic 

optimization is applied to determine the blend of reserve 

purchases, the resultant cost is always less than or equal 
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to the cost of purchasing either of the two types of 

reserve exclusively. 

Given that the stochastic optimization yields the optimal 

reserve schedule which addresses the generation 

uncertainty, it can be helpful to observe the variation in 

the cost of reserve purchases against a number of 

control variables. Figure 4 displays the total expected 

cost of the two-tier reserve purchases against both the 

variance in the predicted wind generation and against 

the ratio of the cost of the balancing reserve to reserve 

capacity. The expected cost of reserve is seen to 

increase in a nonlinear monotonic fashion with 

increasing variance in generation, owing to the 

increased likelihood of reserves being deployed. As the 

cost ratio of real-time balancing reserve to reserve 

capacity increases, the expected cost of reserve 

purchases increases monotonically, but approaches an 

asymptotic value as the relative cost of balancing 

reserve becomes prohibitively expensive, and the 

optimization favors the pre-purchase of reserve 

capacity.  

 
Figure  4: Expected total reserve costs obtained through 

stochastic optimization of the two-tier reserve 

purchases. For a given expected generation forecast, the 

variation in expected cost is shown against changes in 

both pricing of reserves and accuracy of the forecast. 

CONCLUSIONS 

This paper has addressed the use of a two-tier 

distribution network reserve structure to address 

uncertainty in distributed generation. An optimization 

method was proposed where a network is first analyzed 

to determine if there are any potential nodes or lines in 

the network which may potential lead to constraint 

violations. The network was then reduced in such a 

manner that these potentially-binding constraints and 

the associated aggregated network are then used in a 

reduced order optimization. The uncertainty in the 

distributed renewable generation sources is 

characterized and implemented in optimization as a set 

of parallel probabilistic scenarios, with a cost function 

designed to minimize expected costs. For the example 

demonstrated here, there was a potential shortage of 

wind generation, and the expected costs were minimized 

through the purchase of two variants of vehicle-to-grid 

reserves. It was demonstrated that this two-tier reserve 

structure leads to a reduction of the expected reserve 

purchase cost. Additionally, the effects of forecast 

accuracy and reserve pricing were demonstrated. 
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