
CIRED Workshop   - Lisbon 29-30 May 2012 

Paper 0381 
  

  

Paper No  0381     Page 1 / 4 

IINNCCRREEAASSIINNGG  GGRRIIDD  SSTTAABBIILLIITTYY  TTHHRROOUUGGHH  AACCCCUURRAATTEE  IINNFFEEEEDD  FFOORREECCAASSTTSS  OOFF  

RREENNEEWWAABBLLEE  EENNEERRGGIIEESS  
 

 

 Janek ZIMMER  Armin RAABE  Tino LEMBERG 

 LEM-Software - Germany University of Leipzig - Germany E.ON edis - Germany 

 janek.zimmer@lem-software.com raabe@uni-leipzig.de tino.lemberg@eon-edis.com 

 

ABSTRACT 

The rapid growth of renewable energies is leading to 

increasing imbalances between electricity production and 

consumption. During high-wind periods with local 

overproduction of energy, the stability of the distribution 

grid can only be ensured if a fraction of (wind) farms is 

throttled or shut down. Precise infeed forecasts of wind 

and solar power production for individual sites assist in 

reducing these risks because controlling measures for 

renewables as well as the regulation of conventional 

power plants (coal, gas etc.) can be planned with longer 

lead times. 

A forecast system is presented which includes the whole 

chain from weather forecast to infeed forecast. The 

foundation is made up of weather model forecasts from 

the UK Met Office and from the high resolution regional 

model WRF. 

The conversion of forecast weather elements (e.g. wind 

profiles) into infeed energy from the turbines/farms is 

realized by artificial neural networks (ANNs). ANNs are 

able to recognize and eliminate the systematic errors 

produced by weather models.  

The quality of the infeed forecasts is validated with results 

for transmission nodes across the grid of the company 

E.ON edis, situated in the Northeast of Germany. 

INTRODUCTION 

The rapidly growing fraction of renewable energy 
production in Germany brings up new challenges for 
operators of distribution grids, especially in the northern 
half of the country. Grid stability is endangered in more 
and more regions where installed power overtakes actual 
consumption in high-wind cases. Preparation of stabilizing 
measures (load control) demands accurate forecasts of 
energy production down to the producing sites.  
The engineering consultancy LEM (Load and Energy 
Management) has been established in 1997 and worked 
together with numerous energy suppliers and industrial 
clients. The company is ever since specialised on load 
forecasts among other energy-related topics.   

FORECAST SYSTEM 

The forecast system is required to provide site-specific 
predictions for wind and solar power generation. In the 
present case, we make use of two independent weather 
models which create timeseries of weather elements such 
as wind speed, temperature etc. Artificial neural networks 
are applied as post-processing models to link weather and 
energy production by means of a training period of past 
data. The system schematic is illustrated in figure 1. 
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Figure 1. Forecast chain for renewable energy forecasting 
using two independent weather models and one configured 
artificial neural network for each of them. 

Weather models 

Forecasting renewable energy production requires reliable 

predictions of the steering weather elements such as wind 

speed or solar radiation. We make use of the weather 

model chain of the English weather service, the UK Met 

Office (UKMO). The site-specific model output is updated 

four times a day with lead times of 60 hours for the 

regional model and 7 days for the global model. The finer 

resolved data is used for the short-term predictions. 

In addition to the wind forecast of the English model, 

another 3-day model forecast using the Weather Research 

and Forecasting Model (WRF, http://www.wrf-model.org; 

Skamarock et al., 2005, [3]) is provided by LEM. The 

high resolution runs provide data with a grid spacing of 4 

km in a large area surrounding the wind farms. It is thus 

possible to better describe the influence of small-scale 

terrain inhomogeneities as well as certain weather 

elements, such as localized shower activity. 
The ability of the WRF model to simulate the temporal 
evolution of wind fields has been addressed by various 
researchers. Zelle et al. (2011, [4]) compared the wind 
speeds of the model for wind farms in the Netherlands 
with station observations. The employed statistical error 
measures revealed a good agreement between them, with 
somewhat better results over land than over water. 
Hahmann et al. (2011, [1]) studied the model wind fields 
concerning their vertical structure (shear) und found that 
the wind profiles varied depending on the chosen 
boundary layer parameterization. Overestimated winds 
near the surface together with underestimations above hub 
height occurred in some configurations. Statistical 
methods during post-processing are able to minimize those 
systematic errors in both cases, thus increasing the 
reliability of the forecast. 

Artificial neural networks 

The gap between forecast weather conditions (e.g. hub 

height wind speed and global radiation) and the desired 
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wind energy production forecast is closed by artificial 

neural networks (ANN).  

ANN are used in the same fashion as other statistical 

methods like model output statistics (MOS), in the way 

that they identify correlations between input variables and 

the infeed energy. A schematic of an ANN is given in 

figure 2. The input vector (mostly weather elements) is 

connected with the neurons in the first hidden layer via 

weightings. During the training period, the ANN tries to 

learn the pattern connecting the individual influencing 

variables and adapts the weightings between the neurons 

with every learning step until a certain search criterion 

(e.g. error) is reached. 
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Figure 2. Schematic of an artificial neural network 

consisting of input and output layers as well as hidden 

layers. The weightings are coloured according to their 

impact. 

 
ANN are very effective in reducing systematic errors, such 
as overestimation of near-surface winds in high-resolution 
weather models. Furthermore they can learn effects which 
arise from site-specific properties (terrain bumps, 
shadowing effects of upstream wind turbines or 
trees/buildings in the case of solar panels etc.), which are 
not captured by the weather model. 
The application of global and/or regional model forecasts 
in conjunction with neural networks for wind energy 
prediction has been described by Salcedo-Sanz et al. 
(2009, [2]) among many others. They obtained a 
significant improvement in the wind forecast when 
compared to traditional methods. In the present paper we 
make use of the successor (WRF) of the MM5 model 
which was used by Salcedo-Sanz. 
 
Artificial Neural Networks have been used for load 
forecasting with LEM for many years. The existing model 
has been adapted specifically for the purpose of renewable 
energy infeed forecasts. This implies the incorporation of 
new influencing variables as well as more complex ANN 
training methods. 
Due to the rapidly growing number and total power of 
wind farms in Germany, controlling measures by grid 
operators occur more often compared to previous years. 
Hence the infeed (load) time series measured at parks or 
transmission nodes do not always represent the true 
capacity of production for given weather situations. 
Therefore, the forecast system has been extended by an 
algorithm which automatically detects and removes 
controlled load episodes from the ANN training period in 
order to provide a clean time series. This procedure 
minimizes the bias of the forecast and reduces the overall 
prediction error. 

Another challenge arises if existing parks are extended in 
terms of installed capacity. The current system is able to 
adapt to an extension of the wind/solar park without loss 
of information from past time series for ANN training. 
Otherwise, no reliable data basis (minimum one year) 
would be available for network training. 

IMPLICATIONS FOR GRID STABILITY 

The E.ON edis company is a large grid operator situated in 
the north-eastern part of Germany. The installed power of 
wind farms in the company’s grid currently amounts to 4.5 
GW, rapidly growing to a prospected value well above 10 
GW within the next two years. Since the maximum 
production of renewable energy plants is higher than the 
consumption of customers (max. 2 GW) in the same grid, 
a collapsing grid would be inevitable many times of the 
year during high-wind weather situations.  
Thus, throttling or shutting down individual parks/farms is 
one important option to ensure grid stability. There are 
two main aspects regarding these infeed control measures: 

a) Legal obligations: According to German law, the 
grid operator is obliged to inform the park/farm 
owner about any controlling measures affecting 
his/her park. This information has to be 
published one day in advance. 

b) Load of grid lines: The throttling/shutdown needs 
to be planned for those grid lines which are 
suspected to be overloaded with renewable 
energy infeed. 

Both aspects are taken into account in the grid operation 
headquarter by dispatchers on duty. A forecast of infeed 
renewable energies provides a guideline for planning of 
control measures. Without it, the current (measured real-
time) load of the grid would be the only indication about 
where and when to throttle or shut down, which would 
dramatically raise the risk of a grid collapse. High-quality 
forecasts can therefore be used to plan actions one day in 
advance or even earlier. Scheduling affects both the 
parks/transmission nodes to be controlled and the 
personnel in charge.  
Moreover, an early-stage planning of infeed control is 
mandatory in order to fulfil the legal requirement of an 
equal treatment of park owners. This implies that one and 
the same park should not be shut down or throttled more 
often than others. 

FORECAST RESULTS 

In this section, we present preliminary results of the 
achieved forecast quality for wind and solar energy 
production.  
A comparison of measured and predicted infeed energy is 
exemplarily shown for a transmission node in the E.ON 
edis grid in north-eastern Germany (fig. 3). The pictured 
period exhibits both high-wind and calm weather 
situations with a couple of intermittent peaks. Except for a 
few underestimated peaks, eyeball verification suggests an 
accurate forecast in this case.  
A more distinct picture is obtained when looking at the 
frequency distribution of deviations (Pforecast-Pmeasured). Fig. 
4 shows the relative deviations over the year 2011 for the 
same park. It is evident that the raw weather model 
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forecast does not exhibit significant errors after it was 
post-processed by the artificial neural networks. The 
median of the distribution is located within the 0-1% 
interval. However, underestimation occurs slightly more 
often than overestimation. This is likely to be originating 
from the short-lived wind peaks (lasting not longer than 1 
hour) which are not satisfyingly captured by the weather 
models. 
 

 
Figure 3. Comparison of 30-hour forecasts (blue) and 
measurements (red) of infeed wind energy at a 
transmission node in northeast Germany. The results show 
only a four weeks period, while one year of past load and 
weather forecast data has been used for training. During 
the first days the park has been shut down as indicated by 
the flat red line. 
 

 
Figure 4. Error frequency distribution of the same wind 
park as in fig. 3, but including the forecast of the whole 
year 2011. Values greather than zero represent 
overestimated infeed energy by the forecast. The deviation 
is computed in relation to a fixed power value over the 
whole period. 
 
The accuracy of solar energy production forecasts greatly 
depends on the weather model’s ability to capture low-
level clouds. Thus, better results are obtained during the 
warm season while fog and low stratus clouds in winter 
and fall tend to lower the overall quality.  
Fig. 5 shows an example of aggregated 30-hour forecasts 
for one solar park. It can be concluded that both the 
amplitude and the timing of the solar energy are captured 
quite well on most days. Similar to unresolved short-lived 
wind peaks, the forecast model chain is not able to resolve 
the “chaotic” nature of small clouds that cross the park in 
this summertime case. Those peaks and valleys are 
averaged out on a reasonable timescale. 
 
 

 
Figure 5. Comparison of 30-hour forecasts (green) and 
measurements (red) of infeed solar energy at another 
transmission node in northeast Germany during a 2-week 
period in summer 2011. 

CONCLUSION 

A comprehensive forecast chain for wind and solar power 
prediction is proposed in this paper. It comprises two 
independent weather models and subsequent trained 
artificial neural networks.  
The results reveal the advantages of neural networks as 
post-processing models. The forecasts show no significant 
systematic errors as indicated by the error distribution 
function for wind. Similar applies to solar power forecasts, 
which have a seasonal cycle of error though. 
The presented results were obtained with a one-year ANN 
training period only. It is assumed that a longer period will 
result in higher accuracy. Moreover, the two individual, 
model results (UKMO and WRF) will be merged to 
further reduce the uncertainty via time-dependent 
weightings. 
Accurate infeed forecasts are required prior to load control 
measures which are undertaken by distribution grid 
operators. Since the current status of the forecast system is 
currently to be implemented on the operator’s side, 
detailed assessments and implications for grid stability 
measures have to be addressed in future work.  
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