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ABSTRACT

The main particularity of distribution system state
estimation is the lack of real-time measurements. In order
to establish the state estimation function, pseudo-
measurements need to be introduced. As there is
generalised uncertainty in the power demand, the load
characteristics can be utilised to appropriately model the
pseudo-measurements.

This paper proposes two new approaches for modelling
pseudo-measurements for the purpose of distribution system
state estimation, the first is based on correlation and the
second is based on load probability density functions.

INTRODUCTION

In recent years, a lot of changes occurred in the way that
every power system operates. Large penetration of small
scale generation - widely known by the term distributed
generation - is now a common feature of many distribution
networks.

Active distribution networks seem to be the panacea to all
the problems caused by distributed generation and it is
widely accepted that active management of distribution
network will increase the capacity of distributed generation
that the distribution network can accommodate. A necessary
function for the materialisation of active distribution
networks is the state estimation function.

One of the main particularities of Distribution System State
Estimation (DSSE) is the lack of real-time measurements. In
distribution, real-time measurements are typically found at
the main substations; lines and loads are not usually
monitored - not even low voltage substations. There is a
generalised uncertainty about the power demand conditions
and the line loading, thus pseudo-measurements need to be
introduced in order that the state estimation mathematical
models can be established and a unique solution can be
obtained.

In order for DSSE to be an effective and useful tool,
acceptable accuracy has to be achieved. For this to happen,
real-time measurements need to be introduced in addition to
pseudo-measurements. However, the fact that the majority
of measurements used in state estimation are pseudo-
measurements reveals the paramount importance of their
appropriate modelling, so that they represent the network
conditions as realistic as possible.
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It is natural to model pseudo-measurements through normal
distribution because of its compatibility to Weighted Least-
Squares (WLS) estimation based on the maximum
likelihood theory. However, the normal distribution
assumptions of load profiles, adopted in many papers, do
not reflect a realistic situation. In [ 1], Seppala has suggested
log-normal distribution models which were verified from
hourly load measurement data obtained from a Finnish load
research project. Ghosh et al. [2] have investigated this
issue further through load correlation coefficients using
diversity factors. They have validated various models such
as normal, log-normal and beta distribution through chi-
square goodness of fit test.

In [3], an Artificial Neural Network (ANN) scheme is used
for producing pseudo-measurements capable of describing
the system operating conditions and in [4], the load profiles
of non-monitored consumers are determined by using Linear
Programming (LP) and taking advantage of typical load
profiles and data from metered consumers. In addition, load
allocation techniques based on a fuzzy state estimator and
l;-estimation are demonstrated in [5] and [6], respectively.
Furthermore, although not specifically targeting to
distribution networks, reference [7] is introducing a
Probabilistic Autoassociative Memory (PAM) model for
tackling problems with missing measurements. Finally, [8]
presents an interesting DSSE approach with non-Gaussian,
statistically correlated variables.

This paper proposes two new approaches in modelling
pseudo-measurements for DSSE.

The first approach entails the calculation of correlation
coefficients between real-time measurements at the main
substation and normally non-monitored electrical quantities
at other buses and lines and the application of regression
analysis.

In the second approach, the variability in load distribution is
modelled through a Gaussian Mixture Model (GMM)
approximation. The advantage of GMM approach is that
different types of load distributions can be fairly represented
as a convex combination of several normal distributions
with their respective means and variances.

In both cases, historical data or temporary measurements are
used and the improvement introduced in the accuracy of
DSSE is assessed.

STATE ESTIMATION

The general state estimation problem is mathematically
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given by:
z=h(x)+e (1)

where z is the measurement vector, x is the state vector, A is
the measurement function vector and e is the measurement
random errors vector.

For the purposes of this paper, the WLS technique was
used. This involves finding the vector x that minimizes the
objective function J(x), defined as:

J(x) =[z=h(x)]" R'[z-h(x)] 2

where e ~ N(0, R) is zero mean Gaussian noise with error
covariance matrix defined as:

R= diag(alz,ag,...,az ) 3)

m

The derivative of this objective function is linearised and
iteratively solved to obtain the update in estimate of the
states as follows:

Xpq =% +G () HT (x )R '[2-h(x;)] (4
where

h(x)

G(x;)=H" (x,)R"H(x;) and H(x)= 2 = 9.6

are the system Gain matrix and the measurement Jacobian
matrix, respectively.

METHODOLOGY

A. Correlation Approach

Let X and Y be two random variables. The joint second
moment about the means of uy and uy is the covariance of X
and Y defined as:

cov(X,Y) = E[(X =y )Y - piy)] )

Covariance is a measure of the degree of linear relationship
between variables X and Y. The normalised covariance or
correlation coefficient is defined as:

Pxy = X, (8

OxOy

where oy and oy are the standard deviations of random
variables X and Y, respectively. The correlation coefficient
takes values between -1 and +1. The closer the correlation
coefficient is to its extreme values, the more linear is the
relationship between variables.

For a set of observations {(x;, y;), i=1,...,n}, the correlation
coefficient is given from:
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In the context of DSSE and assuming that measurements are
not independent, the non-diagonal elements of the
measurement covariance matrix are equal to:

Rl-j =0,p;i0; (10)

where o; is the standard deviations of measurement i, g; is
the standard deviations of measurement j and p; is their
correlation coefficient. Taking advantage of the fact that
real-time measurements are usually available only at the
source substation and using historical data or temporary
measurement devices, correlation coefficients between real-
time measurements at the source substation and electrical
quantities at buses or lines that are not normally monitored
can be calculated.
With the same data, regression analysis can be applied using
real-time measurements at the substation as independent
variables and electrical quantities at non-monitored buses as
dependent variables. Depending on their correlation
coefficient, linear or non-linear regression can be used.
Along with the regression line, prediction intervals are
identified which, in turn, are translated to pseudo-
measurement standard deviations.

B. Load Probability Density Function Approach

The variability in the load probability density function (pdf)
was modelled using a Gaussian Mixture (GM) model
approximation. A GM pdf is a weighted, finite sum of
Gaussian pdfs. It is characterized by the number of mixture
components and their corresponding weights, means and
variances. Since a pdf must be nonnegative and the integral
of a pdf over the sample space of the random quantity it
represents must evaluate to unity, the mixture weights must
be nonnegative and sum of all the weights must equal to
one. For the multivariate case, the GM pdf model can be
given by:

M
Szl = ;Wif(zLui’Ei) (11

where M. is the number of mixture components, w; is the
weight of i mixture component, subject to:

MC
w; >0 and Y w; =1 (12)
i1

and y is chosen from the following set of parameters:

r:{y:y={w,.,ﬂ,.,z,.}?jf} (13)
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each member of which defines a GM.
Given a d-dimensional random variable z, mean u; and
covariance 2, the pdf of each mixture component is a
normal distribution given by:

1 _
1 fg(zfm )TZ,- l(z*ﬂi

)
14
(Zn)d/zdet(zi)”z € (14)

SElu,2)=

The parameters of the mixture components were obtained
using the Expectation Maximisation (EM) algorithm in [9].

CASE STUDY

The performance of the state estimator was evaluated using
both pseudo-measurements modelling approaches on a part
of the 33kV EDF Energy network shown in Figure 1. The
network comprises two radial sections, connected via a
normally open circuit breaker. The results corresponding to
section 1 (Buses 1, 2 and 3) are presented in this paper.
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Figure 1: 33kV EDF Energy Network
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Twenty four hour, one minute measurement data were
obtained from the EDF Energy control centre for a typical
winter day. The voltage and current magnitudes at the main
substation were used as real-time measurements in state
estimation. Voltage angle measurements were created using
load flow simulations for comparison purposes. Active and
reactive load data at Buses 2 and 3 were used to create
pseudo-measurements using the two approaches.

The accuracy of the real-time measurements was assumed to
be 1%. The standard deviation of error in the i” real-time
measurement was calculated using the following formula:

accuracy;
o, = z, JEHray;

15
=430 (15)

where z; is the measurement value and o; is the standard
deviation of the error. The standard deviation of error in
pseudo-measurements was derived from the corresponding
modelling approach.

In both approaches, 99.7% confidence intervals were used
for real-time measurements and pseudo-measurements,
which correspond to +30.
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Figure 2 demonstrates the concept of the Correlation
approach. The red markers represent 1440 (Iy,, P»)
measurement points, the blue continuous line indicates the
linear approximation of I, against P,, and the blue dotted
line shows the 99.7% prediction interval.
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Figure 2: Correlation Approach

Figure 3 demonstrates the concept of the Load Probability
Density Function approach. The blue bars represent the
original distribution of P,, the red dotted line shows the
individual GMM components, and the black line outlines
the GMM pdf. In this case, the load pdf is represented by
two Gaussians.
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Figure 3: Load Probability Density Function Approach

The voltage magnitude and voltage angle estimates using
both approaches are shown in Figures 4 and 5, respectively.
The red continuous lines represent the actual measurement,
the blue continuous line is the mean value of the estimate
and the blue dotted lines are the 99.7% confidence intervals
(£30). In all cases, the estimates follow the pattern of the
actual measurements.

As real-time measurements were used at the main substation
only, the mean value of the voltage magnitude estimate at
the remote Bus 3 shows the largest deviation from the actual
measurement. However, in all voltage magnitude estimates,
the actual measurements lie between the 99.7% estimate
confidence bounds, indicating voltage magnitude estimates
that can be trusted at all times.
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Figure 5: Voltage Angle Estimates

As for the voltage angle estimates, both approaches succeed
in providing good estimates at Bus 2. The actual
measurements lie between the 99.7% estimate confidence
interval at all times using both methodologies. On the other
hand, only approach B succeeds in providing good
estimates at Bus 3 at all times. Approach A fails to do so
around hour 12, where the actual measurements lie outside
the 99.7% estimate confidence interval. As shown in Figure
2, this is due to the fact that, as at that time I}, is 175-180A,
the actual (I;,, P,) measurement points lie outside the 99.7%
pseudo-measurement modelling prediction bounds.
Increasing the prediction bounds at the pseudo-
measurement modelling stage can overcome this shortfall.

CONCLUSION

Two approaches for modelling pseudo-measurements have
been presented. The performance of the WLS estimator
using the proposed approaches was evaluated on a practical
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test network. Reliable voltage magnitude and voltage angle
estimates were obtained. The performance of the two
approaches indicates that they can be benefial for
Distribution System State Estimation. As an extension of
this work, these techniques can be applied on large
distribution networks at lower voltage levels.
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