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ABSTRACT

Within the framework of the Move2Future projdeDP
Distribuicdo EDPD) is adapting to new realities and
technologies, taking advantage of the investmémts
AMI. In that effort, EDPD embracedhe development of
a comprehensive methodolotgyenhance the support to
investment decisionsincreasing responsiveness and
quality of servicewhile controlling the associated risks
This involved developing specific data analytics
approachedor syntheticload modellingbased on real
data and adapting planning tools to synthetize grid
outcomes ofuchmodeling as risk indices. This paper

presents the main challenges related to modelling and

simulation pinpointing key issues in computing
resourcesalgorithmdesign and resultgresentation

INTRODUCTION

Utilities are nowadaysdealing with a new reality: aw
loads andlistributed energy resourcemerged anthrge
volumes of metering datebecame availableMetering
data allowsan improvedunderstanding ofload and
generation patternghich can be usetb enhance the
support to investment decisiobg embracing an explicit
risk-controlled probabilistic decisiemaking paradigm.
Our work in this field is multifold. In this paper, the focus
will be on the degloped data analytics necessary to

characterize loads stochasticity and on the adaptation of supervision,
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Figure1 7 Disaggregation oflevelopmentsn data analytics

(above and stochastic simulation (below) carried out to enable

risk-controlled probabilistic decisiemaking.

METHODOLOGY FOR CLUSTERING
DAILY LOAD / GENERAT ION PROFILES

Encouraged byechnological developmenttilities are
gathering large amounts of AMI data[l]. To deal
successfullywith this newly available data, both for
consumption and for productiprEDP Distribuicdo
(EDPD) has been participaty in the development of
new data analyticsIn particular, analytics have been
used to cluster timeseries of load without human
avoithg preconceived profiling and

the existing simulation tools necessary to deal with such segmentation.

stochasticity and provide the basis for decisiaaking
in grid investment. This is summarized in thdduling
and illustratedn Figurel.

1)

profiles into typical load/genetian profiles, and

characterize such profiles to extract representative d evel oped

Develop specific data analytics tools to explore the
metering data aiming at segmenting customer

This section addressesthe main steps ofthe
methodology (i) to segmenttimesseries of load data
from the universe oflistribution network site¢§DNS),
namely primary substations, secondarybstations
clients and producers (ii) to characterize the
corresponihg behaviouipatternsThe segmentatiomvas

behaviours to be modelled as stochastic processes adequate statistical computing tools andjraphical

parameterized into Markov chains;
2)
decisionmaking (DPlan), to input representative
load/generation

environments.

Evolve the computational applications that support An initial analysisshowed thatas anticipatedpower

consumptionand productionpatternsvary according to

behaviours as parameters of the season of the year ashaly of the weekbusinesslays,

stochastic processes and simulate such processes toSaturday Sunday). Therefore, theethodology started

provide probabilistic results that
risk-controlled planning decisions ovegrids

support
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by dsaggregating the data accordingstech period for
each DNS
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As there areobvious similarities betweeoonsumption
patternswithin the same periodhe second step was to
configurea singleload profile representative oflalays
of a given period.To do sg we have identified and
eliminated, using densitypased clustering methods, the
days with abormal power consumptioand calculated
theaverageof the selectedemainingprofiles [2]

The processof clusteringwas repeated for théour
seasons of the yeandthethreetypesof day. As a result,
we obtainedwelve daily profiles for eachDNS, which
together characterizeDNS annual averagebehaviour
Figure 2illustratesthe process
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Figure 2 7 Summary of the methodology for clustering daily
profiles.

The next step of the methodology consistégrouping
DNS time sefes in clustersaccording to the power
consumption/production patternd/e used hierarchical
clustering to accomplish that As the aim of the
methodology was to compare load profile#th each
otherin terms of shapeye standardizé DNS timeseries
before clustering themStandardizationwas doneby

of PS, which makes the daily clustering approach
computationally expensiveTable 1 shows the total
number of DNS for eacloadcategory.

Table 1i Number of DNS for each category

DNS Category Number of DNS
PrimarySubstations 404
Secondary Substations 68 200
Clients (HV and MV) 24 400
Producers (HV and MV) 630
Clients (LV) 6 065 720

After clustering, each DNSs characterized by a
sequence of twelve daily profiles chosen from the
corresponding cluster centroids. Such sequence of
centroid profiles together with the specific DNS load
mean and standard deviatiofused for profile
standardization) are then storedfas minimal necessary
information to characterize DN&nualload behaviour
individually. Figure 3 illustrates such information for a
specific SS caseAs it will be explained nextthis
information will becrucial to set up a discretene non
stationaryMarkov process that realistically reproduces
high-resolution daily load volatility and time
dependency

MODELING, SIMULATION AND
SYNTHESIS FOR PROBABILISTIC
ANALYSIS

Modelling
This section descrite how the standardized daily

subtracting the average time series value to the series profilesand AMI dataare usedo model load dynamics

& and dividing the restby the standard deviation.
We took different clustering approaches for primary
substations (PS) and for secondary substations (SS).
1 For PS, the clustering minimized the distances
betweentime series composed by theelve daily
averagdoadprofiles of each DNSn a row,resulting
in auniquerepresentativioad profileto characterize
eachs u b s t annudalbehavisur?2].

For SS, the previous approach failed to provide good
results due ta much higher level of weekly and
seasonaload diversity. So, wetook the option of
clustering daily patternand then charactering
annual behaviour biyhe compositionof twelve daily
representativgpatterns.Accordingly, the clustering
has been set to minimize distances betweaity
time seriesindependerhy®.

Daily pattern clusteringinvolves a much higher
computational efforthan theannualpatternapproactas
the universe of daily timeeries is much highehanthe
number of annuaderies In addition to thisthe number
of SS and L\tlientsis also much highethan thenumber

1 Proven to be an improvement over the annual pattern approach, the
daily pattern clustering is now being used to characterize the annual
behaviour of PS as well.
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and sample load values for each DNS, in each time
period, through a stochastic Markov proce§he
Markov process us€§) the standardized individual load
time series clusteed under the same patterto
characterize the pfite stochasticityand (ii) the cluster
centroidload profile to characterizthe typicalintra-day
load dynamics of eagbattern

As load state transition probabilities depend on thegime
of the day, the stochastic process of load is-non
stationary. Alsgsince time resolution of the time series
is 15 min achain of 95 Markov transition matricesl!
model daily stochasticity with realistic time
dependencies. Many load states need to be defined in
order to discretize load range adequately. &8sessed
that 25 load stateswere needed tallow acceptable
characterizationThe number of Markov chains needed
for each daily profile and the size of the state space
required to discretize load adequatalpuld make he
illustration of the approach takémpractial. Therefore,

in his paperwe opt to illustrate the main ideas of the
approach wittremallscaleexample.

Page2/5



}CIRED;

CIRED Workshelpubljang/-8 uine 208

PapeiN089
Winter Spring Summer Autumn

Bus. day | Saurday Surday Bus.day | Saurday | Surday Bus. day | Saurday | Surday Bus. day | Saurday | Surday
>
<
O]

3 3 1 4 3 2 1 2 2 3 1 1

m 74.15 72.58 68.43 58.85 54.40 53.02 53.41 50.58 50.62 58.20 54.16 53.59

S 14.45 16.41 13.76 10.63 10.09 9.94 8.74 8.20 9.30 11.37 10.94 10.38

Figure 3i Information needed toharacterize particular S&nnual load behaviou(i) sequence of centroid profilesd (ii) specific

DNS loadmean andstandard deviatianThe example highlights the importance of having a methodology which correctly identif
different behaviours over the year. We can see that the typical load pobfilesiness days are similar in Winter, Spring and Autumn

and different in SummeiThis reslts from the fact thathis SS feeds a high schoethich makes thdusiness day profilenore
residentiallike in the Summer

Figure 4 illustrates aimple case with aviarkov chain
with threeload states {0, 1 ,2} and the corresponding
sequence of transition probabilities as given byahe
, with} as given below:

matrices0 Q

k=1

Fig. 41 Diagram representian of a threestate Markov chain

with a sequence of transition probabilities calculated for three

states and 96 time periodsedto illustrate therepreserdtion
of intra-day dynamics of daily profikwith 15min resolution.

A more indepth explanation of the method used to
parameterize Markov processof daily patters can be
found in [3] together withthe necessary algorithms to
obtain the transitioprobability matrices
Once parameterized, the Markov process can be osed t element in the bus admittance matrigu¥corresponding
samplea sequence dbadstates4]. The sampling can be

easilydoneby undertaking a recurrent updating process

as follows:

® D

g

0
o

~(1)
Q m

Where,0 refers to the probability distribution function
represented by nix 0 Q. A sequence of load states

& is obtained for each load of the same profile type

(same clusterpy sampling Each new sampling produces

a different sequengandomly. Randomness depends only

onthe profile type.Load specific characteristics (beside

profile type)suchad oads &

not taken intoaccountin the modelling stage. They will
be used only in powetow simulation.
Before poweiflow simulation, sampled sequences
have tobe destandardized with information on the load
specific probabilistic moments. This is donerbyerting
standardizationi.e., ® N @
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Simulation

De-standardiation is carried ouby the grid simulator

(DPlan)after a Markov chaibeingassigned t@ach'ch

busof the grid. Ore assigned representative sequences of
load states to each and every bus load, the grid state is

simulated by running an AC pow#ow for each time

period Qand yea©. Simulation encompassasvhole set

of "0 powerflows for each scenari¢5]. The power

flow analysis problem can be solved usual, i.e., by
assigning a complex load valu&l

o

p D

0 (9% toeachload bu€ (O, 31 A AJand finding
for each"@h

the subsequent complex voltag@sQ
bus Usual solution approaches rely upon the Newton
Raphson method] for meshed operating grids and upon
the forwardbackwardsweepmethalsfor radial operated

grids [7].

Based on the powdlow solutions obtainedbranch

currens can be computed and be compared to grid

equi pment 6s
profile of currens in brancha-b, O

0 e

Where,’O andd arethe real and imaginary parts of the

®wQ

wQ
pM8 FO

capacity
can be obtained

by computing the current in each and every branch of the
grid in each time perio®and yeao as:

0

to thei-th row and-th column.

The profile of currergtis an indirect result of the sampling
process. The flows result from the different dynamics of
the different loads in the feeder.
sampling, one may use the profilews to extract
information abouthe distribution function of the current
in that branch. Synthetized
distribution function can be obtained by frequency
analysis in the domain of currefidws, O, and be
represented by a histogram. We give some details of
histogram construction in the context of theesentation

of results in the following.

expectarei on and

Synthesis

As previously described, each DNS is characterized by
twelve sampled load profiles with 96 time periods. As
such, to simulaténe operation irone year, w@erform at
least 1152 power flowsthus obtaining the values of

var.i

ance

t o

@ hQ mp

information about the

currents and voltages for all branches and nodesdh
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of the 1152 time period3 o dbtainsuch results over real
sized grids in very little timeonerequiresefficient, high-
performare analysis algorithmsand to uderstad the
resultsobtained, oneequires specific frequency domain
illustration capabilities.

DPlan has been extended in functionalityaoklethose
issues. It has evolvedo ago reportsystemwide statistics
for the whole grid andto providespecificrisk measures
for eachand everybranch and nodef the system
Systemwide statistics include:

1 Yearly supplied energy (aggregated/alue from the
weighted averagef daily simulations)

Yearly energylossegalso byaggregation)

Expectedenergynot supplied(by aggregation)
Capacity violaion probability forgrid assets
Maximum capacity violatioin grid asses;

Voltage violation probability given installation
specificvoltagelimits;

I Maximum voltage violatiomn grid installations
Specific risk measuresvere also reported for grid assets
individually, both qualitatively and quantitatively.
Qualitativeresults were reportad a simpleintuitive way
overthe geographic view of the gria.

1 Colouring the grid branches according to the
capacity margin, i.e., the difference between each
asset rating and the estimat@dximum currenfor
a givenconfidence levefor such maximum (95%,
in this case);

Colouring the grid nodes and installaticsites
according tosoltage margins, based on thstimated
maximum and minimum voltage$or a given
confidence level

The colouring schemieas been madaustomizd by risk

=A =4 =4 -4 =4
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level, in view of the reference values for risk efished

by the utility and regulatos. In the case llustrated,
colouring has been carried out based on the risk definition
of Fig. 6.

Qualitativeresults are provided dequency distribution
of current andoower for each branch and of voltage for
each nodksite Once definedhe range opossiblevalues
for a given branch or node result, say curréft | the
rangeis partitiored into a number of mutually disjoint
intervals called buckets (or bins) atite frequencyQis
computeddy counting values in each interval he set of
pairs "@Q is the histogram’© . In Fig.5we showa
histogram of the currents in a particular branch
(highlighted in white in the figure)

Quantitative results are provided astimatedmaximum

or minimum for a given variable (current, poweoyr
voltage), as well as probabilities of violating ratings,
regulatory voltage limits, etc. In Fig. #he currens turn
out to exceed the branch irg with significant
confidencel see thatn the histogram. Suchignificance

is quantified by estimating the probabjlibf violating
asset s b110% ip thefigureyand is illustrated by
colouring the histogram frequency bars for which the
interval is beyond the branch rating (bin bars coloured in
red).

Other quantitative results are presentaad illustrated

for the branch dialog of Fig. 5. Maximum and average
current values estimated are reported for the branch, as
well as the maximum and average poardmaximum

and average power losses.

Similar results are presented festimated node and site
voltages.

Fig. 51 lllustration of the results
obtained for the grid sample
loads after being synthesize
Results of the synthesis al
shown in two different ways: (i
qualitative results are show
over the geographic view of th
grid by colouring the grid
conductor equiment according
to therisk of capacity violations
as defined in Fig. 6; (i)
guantitative results areshown
for one selectedbranch-- one

for which the current is

expected to exceed the bran
rating capacity with significant
probability.  Significance s
illustrated by estimating the
probability of capacity violation
(11.9% in the figur¢ and by
colouring the histograrr
frequencybars that correspond
to pairs for whichthe bin limits
exceedhe branctrating
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