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ABSTRACT 

Within the framework of the Move2Future project, EDP 

Distribuição (EDPD) is adapting to new realities and 

technologies, taking advantage of the investments in 

AMI. In that effort, EDPD embraced the development of 

a comprehensive methodology to enhance the support to 

investment decisions, increasing responsiveness and 

quality of service, while controlling the associated risks. 

This involved developing specific data analytics 

approaches for synthetic load modelling based on real 

data and adapting planning tools to synthetize grid 

outcomes of such modelling as risk indices. This paper 

presents the main challenges related to modelling and 

simulation, pinpointing key issues in computing 

resources, algorithm design and results presentation.  

INTRODUCTION  

Utilities are nowadays dealing with a new reality: new 

loads and distributed energy resources emerged and large 

volumes of metering data became available. Metering 

data allows an improved understanding of load and 

generation patterns which can be used to enhance the 

support to investment decisions by embracing an explicit 

risk-controlled probabilistic decision-making paradigm. 

Our work in this field is multifold. In this paper, the focus 

will be on the developed data analytics necessary to 

characterize loads stochasticity and on the adaptation of 

the existing simulation tools necessary to deal with such 

stochasticity and provide the basis for decision-making 

in grid investment. This is summarized in the following 

and illustrated in Figure 1. 

1) Develop specific data analytics tools to explore the 

metering data aiming at segmenting customer 

profiles into typical load/generation profiles, and 

characterize such profiles to extract representative 

behaviours to be modelled as stochastic processes 

parameterized into Markov chains; 

2) Evolve the computational applications that support 

decision-making (DPlan), to input representative 

load/generation behaviours as parameters of 

stochastic processes and simulate such processes to 

provide probabilistic results that support 

risk-controlled planning decisions over grids. 

 
Figure 1 ï Disaggregation of developments in data analytics 

(above) and stochastic simulation (below) carried out to enable 

risk-controlled probabilistic decision-making. 

METHODOLOGY FOR CLUSTERING 

DAILY LOAD / GENERAT ION PROFILES 

Encouraged by technological development, utilities are 

gathering large amounts of AMI data [1]. To deal 

successfully with this newly available data, both for 

consumption and for production, EDP Distribuição 

(EDPD) has been participating in the development of 

new data analytics. In particular, analytics have been 

used to cluster time-series of load without human 

supervision, avoiding preconceived profiling and 

segmentation. 

This section addresses the main steps of the 

methodology: (i) to segment times-series of load data 

from the universe of distribution network sites (DNS), 

namely primary substations, secondary substations, 

clients and producers; (ii ) to characterize the 

corresponding behaviour patterns. The segmentation was 

developed using óRô programming, which provides 

adequate statistical computing tools and graphical 

environments. 

An initial analysis showed that, as anticipated, power 

consumption and production patterns vary according to 

the season of the year and day of the week (business days, 

Saturday, Sunday). Therefore, the methodology started 

by disaggregating the data according to such periods for 

each DNS. 
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As there are obvious similarities between consumption 

patterns within the same period, the second step was to 

configure a single load profile representative of all days 

of a given period. To do so, we have identified and 

eliminated, using density-based clustering methods, the 

days with abnormal power consumption and calculated 

the average of the selected remaining profiles [2]. 

The process of clustering was repeated for the four 

seasons of the year and the three types of day. As a result, 

we obtained twelve daily profiles for each DNS, which 

together characterize DNS annual average behaviour. 

Figure 2 illustrates the process.   

 
Figure 2 ï Summary of the methodology for clustering daily 

profiles. 
 

The next step of the methodology consisted of grouping 

DNS time series in clusters according to the power 

consumption/production patterns. We used hierarchical 

clustering to accomplish that. As the aim of the 

methodology was to compare load profiles with each 

other in terms of shape, we standardized DNS time-series 

before clustering them. Standardization was done by 

subtracting the average time series value to the series 

ὢ  and dividing the result by the standard deviation. 

We took different clustering approaches for primary 

substations (PS) and for secondary substations (SS).  

¶ For PS, the clustering minimized the distances 

between time series composed by the twelve daily 

average load profiles of each DNS in a row, resulting 

in a unique representative load profile to characterize 

each substationôs annual behaviour [2].  

¶ For SS, the previous approach failed to provide good 

results due to a much higher level of weekly and 

seasonal load diversity. So, we took the option of 

clustering daily patterns and then characterizing 

annual behaviour by the composition of twelve daily 

representative patterns. Accordingly, the clustering 

has been set to minimize distances between daily 

time series, independently1.  

Daily pattern clustering involves a much higher 

computational effort than the annual pattern approach as 

the universe of daily time-series is much higher than the 

number of annual series.  In addition to this, the number 

of SS and LV clients is also much higher than the number 

                                                           
1 Proven to be an improvement over the annual pattern approach, the 
daily pattern clustering is now being used to characterize the annual 

behaviour of PS as well.  

of PS, which makes the daily clustering approach 

computationally expensive. Table 1 shows the total 

number of DNS for each load category. 

 
Table 1 ï Number of DNS for each category. 

DNS Category Number of DNS  

Primary Substations 404 

Secondary Substations 68 200 

Clients (HV and MV) 24 400 

Producers (HV and MV) 630 

Clients (LV) 6 065 720 

 

After clustering, each DNS is characterized by a 

sequence of twelve daily profiles chosen from the 

corresponding cluster centroids. Such sequence of 

centroid profiles together with the specific DNS load 

mean and standard deviation (used for profile 

standardization) are then stored as the minimal necessary 

information to characterize DNS annual load behaviour 

individually. Figure 3 illustrates such information for a 

specific SS case. As it will be explained next, this 

information will be crucial to set up a discrete-time non-

stationary Markov process that realistically reproduces 

high-resolution daily load volatility and time 

dependency. 

MODELING, SIMULATION  AND 

SYNTHESIS FOR PROBABILISTIC 

ANALYSIS  

Modelling 

This section describes how the standardized daily 

profiles and AMI data are used to model load dynamics 

and sample load values for each DNS, in each time 

period, through a stochastic Markov process. The 

Markov process uses (i) the standardized individual load 

time series clustered under the same pattern to 

characterize the profile stochasticity and (ii ) the cluster 

centroid load profile to characterize the typical intra-day 

load dynamics of each pattern. 

As load state transition probabilities depend on the times 

of the day, the stochastic process of load is non-

stationary. Also, since time resolution of the time series 

is 15 min, a chain of 95 Markov transition matrices will 

model daily stochasticity with realistic time-

dependencies. Many load states need to be defined in 

order to discretize load range adequately. We assessed 

that 25 load states were needed to allow acceptable 

characterization. The number of Markov chains needed 

for each daily profile and the size of the state space 

required to discretize load adequately would make the 

illustration of the approach taken impractical. Therefore, 

in his paper, we opt to illustrate the main ideas of the  

approach with small-scale example.  
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 Winter   Spring  Summer  Autumn 

 Bus. day Saturday Sunday Bus. day Saturday Sunday  Bus. day Saturday Sunday  Bus. day Saturday Sunday 

G
ro

u
p

 

      

 

   

 

   

3 3 1 4 3 2  1 2 2  3 1 1 

m 74.15 72.58 68.43 58.85 54.40 53.02  53.41 50.58 50.62  58.20 54.16 53.59 

s 14.45 16.41 13.76 10.63 10.09 9.94  8.74 8.20 9.30  11.37 10.94 10.38 

 
Figure 3 ï Information needed to characterize a particular SS annual load behaviour: (i) sequence of centroid profiles and (ii) specific 

DNS load mean and standard deviation. The example highlights the importance of having a methodology which correctly identifies 

different behaviours over the year. We can see that the typical load profiles of business days are similar in Winter, Spring and Autumn 

and different in Summer. This results from the fact that this SS feeds a high school, which makes the business day profile more 

residential-like in the Summer.    

 

Figure 4 illustrates a simple case with a Markov chain 

with three load states {0, 1 ,2} and the corresponding 

sequence of transition probabilities as given by the σσ 
matrices, ὖὯ ὴ  , with ὴ  as given below:  

 

ὖὯ

ὴ ὴ ὴ

ὴ ὴ ὴ

ὴ ὴ ὴ

ȟὯ ρ. 

 

 
Fig. 4 ï Diagram representation of a three-state Markov chain 

with a sequence of transition probabilities calculated for three 

states and 96 time periods used to illustrate the representation 

of intra-day dynamics of daily profiles with 15min resolution.  

 

A more in-depth explanation of the method used to 

parameterize Markov processes of daily patterns can be 

found in [3] together with the necessary algorithms to 

obtain the transition probability matrices. 

Once parameterized, the Markov process can be used to 

sample a sequence of load states [4]. The sampling can be 

easily done by undertaking a recurrent updating process 

as follows: 

ὢ Ḑὖ ὢ ȿὢ ὢ  

ὢ ὢ  

Ὧ π 
Where, ὖ  refers to the probability distribution function 

represented by matrix ὖὯ. A sequence of load states 

ὢ  is obtained for each load of the same profile type 

(same cluster) by sampling. Each new sampling produces 

a different sequence randomly. Randomness depends only 

on the profile type. Load specific characteristics (besides 

profile type) such as loadsô expectation and variance are 

not taken into account in the modelling stage. They will 

be used only in power-flow simulation.  

Before power-flow simulation, sampled sequences ὢ   

have to be de-standardized with information on the load 

specific probabilistic moments. This is done by reverting 

standardization, i.e., ὢ ᴺ ὢ „ ‘.  

Simulation 

De-standardization is carried out by the grid simulator 

(DPlan) after a Markov chain being assigned to each Ὥ-th 

bus of the grid. Once assigned representative sequences of 

load states to each and every bus load, the grid state is 

simulated by running an AC power-flow for each time 

period Ὧ and year ὸ. Simulation encompasses a whole set 

of ὯϽὸ power-flows for each scenario [5]. The power-

flow analysis problem can be solved as usual, i.e., by 

assigning a complex load value ὛӶ ὢ ρ ὮϽ
ὸὥὲ‰  to each load bus Ὥɴ ὔ͵  3ÌÁÃË "ÕÓ},  and finding 

the subsequent complex voltages ὠὩ  for each Ὥ-th 

bus. Usual solution approaches rely upon the Newton-

Raphson method [6] for meshed operating grids and upon 

the forward-backward sweep methods for radial operated 

grids [7].   

Based on the power-flow solutions obtained, branch 

currents can be computed and be compared to grid 

equipmentôs capacity to identify congestion risks. A 

profile of currents in branch a-b, Ὅ  can be obtained 

by computing the current in each and every branch of the 

grid in each time period Ὧ and year ὸ as: 

Ὅ ḙ ὠὩ ὠ Ὡ Ὃ Ὦὄ ȟὯ πȠὸ
ρȟȣȟὌ 

Where, Ὃ and ὄ  are the real and imaginary parts of the 

element in the bus admittance matrix YBUS corresponding 

to the i-th row and j-th column.  

The profile of currents is an indirect result of the sampling 

process. The flows result from the different dynamics of 

the different loads in the feeder.  Being a result of the 

sampling, one may use the profile-flows to extract 

information about the distribution function of the current 

in that branch. Synthetized information about the 

distribution function can be obtained by frequency 

analysis in the domain of current-flows, Ὅ , and be 

represented by a histogram. We give some details of 

histogram construction in the context of the presentation 

of results in the following. 

 

Synthesis 

As previously described, each DNS is characterized by 

twelve sampled load profiles with 96 time periods. As 

such, to simulate the operation in one year, we perform at 

least 1152 power flows, thus obtaining the values of 

currents and voltages for all branches and nodes in each 
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of the 1152 time periods. To obtain such results over real-

sized grids in very little time, one requires efficient, high-

performance analysis algorithms; and to understand the 

results obtained, one requires specific frequency domain 

illustration capabilities. 

DPlan has been extended in functionality to tackle those 

issues. It has evolved so as to report system-wide statistics 

for the whole grid and to provide specific risk measures 

for each and every branch and node of the system. 

System-wide statistics include: 

¶ Yearly supplied energy (aggregated value from the 

weighted average of daily simulations); 

¶ Yearly energy losses (also by aggregation); 

¶ Expected energy not supplied (by aggregation); 

¶ Capacity violation probability for grid assets;  

¶ Maximum capacity violation in grid assets; 

¶ Voltage violation probability given installation 

specific voltage limits; 

¶ Maximum voltage violation in grid installations. 

Specific risk measures were also reported for grid assets 

individually, both qualitatively and quantitatively. 

Qualitative results were reported in a simple, intuitive way 

over the geographic view of the grid by: 

¶ Colouring the grid branches according to their 

capacity margin, i.e., the difference between each 

asset rating and the estimated maximum current for 

a given confidence level for such maximum (95%, 

in this case); 

¶ Colouring the grid nodes and installation sites 

according to voltage margins, based on the estimated 

maximum and minimum voltages for a given 

confidence level.  

The colouring scheme has been made customized by risk 

level, in view of the reference values for risk established 

by the utility and regulators. In the case illustrated, 

colouring has been carried out based on the risk definition 

of Fig. 6. 

Qualitative results are provided as frequency distribution 

of current and power for each branch and of voltage for 

each node/site. Once defined the range of possible values 

for a given branch or node result, say current  Ὅ , the 

range is partitioned into a number of mutually disjoint 

intervals called buckets (or bins) and the frequency Ὢ is 

computed by counting values in each interval i. The set of 

pairs ὭȟὪ  is the histogram Ὅ . In Fig. 5 we show a 

histogram of the currents in a particular branch 

(highlighted in white in the figure).  

Quantitative results are provided as estimated maximum 

or minimum for a given variable (current, power, or 

voltage), as well as probabilities of violating ratings, 

regulatory voltage limits, etc. In Fig. 5, the currents turn 

out to exceed the branch rating with significant 

confidence ï see that in the histogram. Such significance 

is quantified by estimating the probability of violating 

assetsô capacity (11.9% in the figure) and is illustrated by 

colouring the histogram frequency bars for which the 

interval is beyond the branch rating (bin bars coloured in 

red).  

Other quantitative results are presented and illustrated 

for the branch dialog of Fig. 5. Maximum and average 

current values estimated are reported for the branch, as 

well as the maximum and average power and maximum 

and average power losses. 

Similar results are presented for estimated node and site 

voltages.

 

 

Fig. 5 ï Illustration of the results 

obtained for the grid sampled 

loads after being synthesized. 

Results of the synthesis are 

shown in two different ways: (i) 

qualitative results are shown 

over the geographic view of the 

grid by colouring the grid 

conductor equipment according 

to the risk of capacity violations 

as defined in Fig. 6; (ii) 

quantitative results are shown 

for one selected branch -- one 

for which the current is 

expected to exceed the branch 

rating capacity with significant 

probability. Significance is 

illustrated by estimating the 

probability of capacity violation 

(11.9% in the figure) and by 

colouring the histogram 

frequency bars that corresponds 

to pairs for which the bin limits 

exceed the branch rating. 

 


