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ABSTRACT 

Demand charge is a tariff option widely used in 

commercial and industrial sectors. As the demand charge 

bills on the peak load within a specified period, it is 

considered a useful pricing tool when the net electricity 

usage is declining due to distributed renewable 

integration. We study the retail tariff design problem with 

demand charge to maximize the social welfare while 

maintains the utilityôs break-even constraint. A 

Stackelberg game model is adopted to describe the 

interactions between the retailer and consumers. The 

tariff design problem is then formulated as a bi-level 

programming model and transformed into a 

mathematical program with equilibrium constraints 

(MPEC). Real-world demand and tariff data are used to 

show the economic and operational benefits of three 

different tariff designs.  

INTRODUCTION  

The increased penetration of distributed renewable 

energy (DRE) has caused problems such as declining 

kWh sales and rising peak-valley difference. These issues 

would risk the financial viability of utilities and bring 

challenges for the operation of distribution systems. The 

demand charge is what industrial and commercial 

customers pay for their peak demand within a certain 

billing period. And in some regions, the demand charge 

has been adopted as an optional structure for residential 

consumers with distributed solar PV[1]. As a kind of 

stand-by costs, the demand charge has been widely 

adopted for fixed investment cost recovery and lowering 

the peak-valley load difference in the system. In this 

paper, we are interested in the design of retail tariffs with 

the demand charge to improve the overall social welfare 

and load ratio under DRE penetration. 

Researchers interested in the demand charge have been 

working on various strategies for reducing the consumersô 

electricity payment facing it. In [2], an expectation-

oriented demand contracting model is proposed under 

uncertainty. [3] studies on how storage can be used for 

demand charge reduction. Concerning retail tariffs, 

numerous works have been in place on the usersô demand 

response facing different retail energy prices[4-6]. Other 

research focuses on designing economically efficient 

tariff to achieve different objective[7, 8]. The most 

relevant papers to our work are [9, 10], where the 

economic efficiency of two-part tariffs with connection 

charges is studied considering DRE adoption. 

The main contribution of this paper is the formulation of 

the pricing model for the demand charge considering 

demand response, which is formulated as a bi-level 

optimization model. We provide an interesting 

perspective that customers can also optimize their usage 

pattern in response to the setting of demand charges. 

Given the pricing model, we further investigate how the 

adoption of demand charge could help improve the retail 

market efficiency and reduce the peak-valley demand 

gap in the presence of DRE. 

MODEL S 

We study how a regulated utility can use the kind of retail 

pricing policy, so-called demand charge, to acquire 

economic and operational benefits in distribution 

systems. The retail tariff design of a monopolistic electric 

utility is established as a Stackelberg game model, where 

the utility and customers take the roles of leaders and 

followers respectively. Explicitly, the utility considers 

rational customersô response in their demand profiles 

while designing retail tariffs. We cast more light on the 

design of demand charges which, due to the billing cycle, 

seldom appear when it comes to demand response areas. 

That said, with the increasing deployment of smart 

metering devices, such design can become more practical. 

The customersô utility is assumed to be a function of their 

load profiles. In this work, we simplify the loads to be 

purely thermostatically controlled loads (TCLs), for 

example, air conditioners. The model of TCLs has been 

studied extensively, thus in this part, we adopt similar 

representations as in [11], where the utility is captured by 

a quadratic function. The customersô monetary utility of 

consuming energy q is given by 

 ( ) ( )1(
1

)
2

q G qS q d w w-= - - - (1) 

where dis a constant of the customersô surplus, G  

deterministic and positive (representing customersô 

elasticity in demand), NRwÍ  the original states of 

customers, N the number of periods in a billing cycle, and 
Nq RÍ  the aggregated load profile of consumers. 

Consumersô electricity payment to the utility consists of 

two parts. One is the volumetric price for per unit electric 
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energy they consume, and the other is dependent on the 

maximal demand in each billing cycle, which is assumed 

to be one day in this paper (notice that the typical billing 

cycle for demand charge is one month). One reason for 

adopting such a tariff structure is that the utility is 

experiencing difficulties recovering its fixed operating 

cost merely from the volumetric price due to the 

decreasing net demand caused by DRE integration. It 

turns out that the demand charge is well suited for this 

problem. Hence, consumersô electricity payment can be 

represented by 

 B=ˊ( )+q r ph-   (2) 

where p RÍ  is the peak demand throughout the billing 

cycle, r the renewable generation profile, NRpÍ  the 

volumetric price vector, and RhÍ  the demand charge.  

The consumersô surplus is equivalent to the monetary 

utility  subtracted by the payment of electricity. Thus, the 

lower level of our problem, which features the behaviors 

of consumers, is given by: 
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Since { }=max i ip q r-  involves complicated judgment in 

modeling, we use the constraint i iq pr- ¢  to limit the 

value of p. It is clear that the solution is located where the 

minimum number (yet is greater than 0) of equalities of 

these constraints is available. 

The electric utility  in this paper is assumed to be a 

Ramsey planner who would maximize the social welfare 

while maintains the financial viability of the utility itself 

(by satisfying its revenue adequacy). Therefore, the 

upper-level problem can be specified 
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where )( ,́q h  and ( ,́ )p h  are the solutions of the lower-

level problem, C  the fixed operating cost of the utility.  

The consumersô (followersô) problem can be 

reformulated as  
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The bi-level problem can then be written as 
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As the lower-level program has concave objection 

function and linear constraints, the solutions of the lower 

level problem can be characterized by its KarushïKuhnï

Tucker (KKT) conditions. Therefore, the bi-level 

problem can be transformed into a mathematical program 

with equilibrium constraints (MPEC), given by 
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where NRmÍ  is the Lagrange multiplier. 

The reformulated problem has nonlinear and 

complementary constraints which make it hard to get the 

global optimum. However, over the years, the solutions 

of MPEC problems have been studied extensively. A 

typical solution method is to linearize some of the 

constraints and transform the problem into a mixed 

integer linear program and then put it on commercial 

solvers. The detailed solution process yet is not the focus 

of our paper, and readers interested in how to solve 

MPEC problems are referenced to [12]. 

NUMERICAL  CASES 

In this section, numerical cases are provided to 

demonstrate the economic and operational benefits of the 

demand charge using the proposed model. 

We use publicly available real-world demand and tariff 

data in this section. And although these data come from 

residential users, similar conclusions can be drawn for 

commercial and industrial customers as well.  

Customersô response  

This basic example is used to show how customers will 

change their load profiles in response to increasing 

demand charges. The volumetric price is fixed in this case. 

We illustrate in Fig.1(a) the customersô load profiles 

under different demand charges. The demand charge h 

(or eta in the figure) ranges from $0/MW to $500/MW 

with the interval set to be $100/MW. This figure reveals 

that with rising demand charges, customers reduce their 

peak load while shift part of it to the off-peak periods. A 

nearly 15% reduction occurs in the peak load under h

=$500/MW compared to that under h=$0/MW. On the 

other hand, the total energy usage throughout the day also 

drops by around 220MW. 

In Fig.1(b), we show how the load ratio, consumer 

surplus, and the retailer surplus would change in 

accordance with increasing demand charges. Fig.1(b) 

shows that the system load ratio and the retailer surplus 

increase with demand charge increments, yet the 

consumer surplus becomes lower. This implicitly shows 

that raising demand charges is a possible way to recover 

increasing fixed operating costs, and we compare its 

performance with raising the volumetric price in the next 

two subsections. 

Furthermore, the increasing retailer surplus also shows 

that even if the volumetric price is somewhat reduced, the 

revenue of the retailer can still be maintained through 

demand charges. Another benefit clear from the figure is 
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that the peak-valley difference is reduced, which relieves 

the burden of system operation. 

 
(a) Load profile 

 
(b) Surplus and load ratio 

Fig. 1 Consumersô response to demand charges. 

Increasing solar penetration 

In this subsection, we look at the performance of different 

pricing schemes under increased solar penetration. Three 

possible tariff designs are studied here: fixed demand 

charge with variable volumetric price, fixed volumetric 

price with variable demand charge, both parts of the tariff 

variable.  

In Fig.2, we set the solar integration to 200MW, and the 

utility adopts the three tariff designs to plan its tariff as 

specified in (4). We plot how rational customers adjust 

their demand profiles in response to the tariffs as 

modeled in (3). The results show that while pure variable 

demand charge can reduce the peak-valley difference 

(increase the load ratio), this effect becomes even more 

significant when both parts of the tariff are modifiable. 

 

 
Fig. 2 Demand profile with solar penetration 200MW. 

In Fig 3, we show how normalized consumer surplus and 

load ratio evolve under different tariff designs when the 

solar integration increases. Note that for a Ramsey 

planner, the retailer surplus is constrained to be a constant, 

which equals the fixed operating cost. It is thus 

reasonable to use the term consumer surplus instead of 

social welfare, which is the sum of the consumer and 

retailer surpluses. The figure shows that when the 

volumetric price is variable, the consumer surplus and 

load ratio have a clear declining trend with solar 

integration. While under variable demand charge, this 

trend is not obvious, and Fig.3(a) even demonstrates a 

slightly increasing trend. The overall performance of the 

three designs is direct, under all solar integration as 

studied in this work, the variable two-part tariffs result in 

more favorable consumer surplus and load ratio than the 

other two. And the variable demand charge design 

outperforms the variable volumetric price one. The figure 

also shows that the demand charge can keep the 

consumer surplus and load ratio from dropping too much 

while satisfying the retailerôs break-even requirements 

under solar penetration. 

 
(a) Consumer surplus 

 
(b) Load ratio 

Fig. 3 Different tariff designs with  solar penetration. 

Increasing fixed operating cost 

We check another series of cases where the retailerôs 

fixed operating cost is increasing, say in our case, by 2% 

every year.  

In Fig. 4(a), we plot the normalized customer surplus 

under the three tariff designs with rising fixed operating 

cost. The figure shows that the consumer surplus in all 

tariff designs decreases, and the demand charge still 


