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ABSTRACT 

In this paper, we address the AC optimal power flow 

(OPF) problem of a microgrid with a distributed 

mathematical strategy. The goal is to find an optimal 

operating point of a grid with limited communications. A 

multi-agent system was designed to implement a state-of-

the-art distributed optimization method, which is 

alternating direction method of multiplier (ADMM). An 

agent, hosted in a processor installed at grid nodes, 

sends optimal set points to connected controllable 

devices. In this distributed strategy, agents need only 

local and neighbourhood data but can give global 

solutions. A 6 bus system is used to validate the agent 

based distributed algorithm with 6 agents at locations of 

nodes. 

INTRODUCTION 

Conventionally, centralized OPF problems had been 

focusing on the transmission network, which is 

responsible of transfer power from centralized power 

plant to large loads and cities. However, the power grid 

is undergoing an profound mutation. The modern smart 

grid, especially at the distribution level and within 

microgrids, is a network hosting distributed energy 

resources (DERs). The increasing amount of loads and 

DERs could also lead to the mutation of network 

topology. Therefore, new challenges in managing these 

DERs and optimizing their operation arise. Distributed 

control and optimization are mandatory fields for the next 

generation of power systems. Distributed rules enhance 

the scalability, stability and security of grids. Moreover, 

distributed algorithms also have the potential of keeping 

the privacy of sensitive information of loads (household, 

industrial and commercial loads…) or DERs (of different 

companies).  

Recently, many algorithms were developed for 

distributed control and optimal power flow in power 

system [1][2]. There are two main approaches of solving 

OPF in distributed strategy. The first approach is based 

on augmented Lagrange decomposition, including Dual 

Decomposition [3], the Alternating Direction Method of 

Multipliers with Proximal Message Passing [3], 

Analytical Target Cascading [4], the Auxiliary Problem 

Principle [5]. The second approach is based on 

decentralized solution of the Karush-Kuhn-Tucker 

(KKT) including Optimality Condition Decomposition 

[6] and Consensus+Innovation [7]. The ADMM used in 

this paper is proven to be a powerful distributed 

optimization method [3]. 

In this paper, we firstly mathematically formulate the 

OPF problem and decompose it into sub-systems with 

objective of minimizing power loss. Agents are then 

designed with server-client structure to implement the 

ADMM algorithm. Finally, a set of processes 

representing the multi-agent system is run to optimize the 

operation of a test case grid with real communication. 

FOMULATION OF DISTRIBUTED OPF 

PROBLEM 

ADMM Algorithm 

Many approaches are based on the ADMM algorithm or 

its variants. This section provides an overview, see [3] 

for more details.  

We consider a problem which is separated into N  

subsystems. General form of consensus problem is 
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where 0   is a penalty parameter, 
2

  is 

 Euclidean norm and 
iy  is the dual variable. 

The ADMM algorithm iteratively minimizes the 

augmented Lagrange by performing the following 

updates: 
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where superscripts are the iteration index, 
gk  is the 

number of local variable entries that correspond to global 

variable entry 
gz . 

The x  and y  updates can be performed independently 

using only local information. The z  update with 

information from neighbours is local averaging rather 

than global averaging. 

Formulation of the optimal power flow problem 

The OPF problem is solved to find a feasible control, 

subject to physics and other limitations. The variables are 

node voltages. 

The OPF problem with objective is minimizing active 

power loss is presented as following:  
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Re ImV V jV   is the node voltage vector.  

Matrices
PZ  and 

QZ  are obtained from: 
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where j Y G B  is the admittance matrix of the 

network system.
k

PZ  and 
k

QZ are same size as PZ and 

QZ respectively, obtained by rewrite constraints in the 

quadratic form. 

If node k  is the load node: 
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If node k  is the generator node, 
min

kP , 
max

kP , 
min

kQ  and 

max

kQ are the active and reactive power limit. 

Distributed formulation of OPF problem 

The objective function could be equivalently 

reformulated as: 
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Therefore we can simply decompose the general OPF 

problem into N subsystems corresponding to N nodes of 

network system. 

The problem of kth  subsystem is defined as: 
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THE MULTI-AGENT SYSTEM FOR 

DISTRIBUTED OPF PROBLEM 

Formulation sub-problem for agents 

In previous section, the OPF was formulated in the form 

of general consensus problem. We use the multi-agent 

system to deploy the ADMM method. Each agent is 

located at a bus of grid network and takes responsibility 

of a sub-problem which is dispersed from the 

decomposing of the global OPF. Agents put at 

controllable devices will send the set points to device 

controllers as results of its own problem. In our case, the 

active power and reactive power are command signals 

sent from these agents to controllers of generators. We 

assume that an agent can access local information of its 

corresponding bus. These local parameters  are voltage 

limit, maximum and minimum power with generator 

buses or load power with load buses, the number of 

connected bus. To implement ADMM, agents also have 

channels to exchange information with neighbour agents 

to update data in each iteration. The agent A is a 

neighbour of agent B if the bus corresponding to agent A 

and the bus corresponding to agent B are connected by a 

power line. Therefore, the number of agents is equal to 

the number of buses and the communication topology of 

multi-agent system depends on the connection graph of 

grid network. 

From the general form of consensus problem and optimal 

power flow problem, the variables of the sub-problem in 

an agent are voltage vector of local and neighbour buses. 

In ADMM method, these variables are local copies of 

global variables of bus voltages. Figure 1 shows the 

construction of variables in agent i  . In this example, 

agent at node i  has capability of connecting to agents at 

node j  and node k . Each edge represents a consensus 

constraint between a local variable component and a 

global variable. 

Agents were designed to implement the iterative ADMM 

method. The operation of agent i  at iteration l  is 

summary as following: 

Step 1) Finding solutions ˆ
i

l
V  of its augmented local 

objective function subjected to local constraints 
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 If i  is the generator node: 
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 If i  is the load node 
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Step 2) Exchanging information with agent j  and 

agent k  to update the estimation of global variable 
k

lZ   
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where  gk  is the number of neighbour and itself, 3gk   

in this case. 

Step 3) Updating the local Lagrange multipliers 

  1
ˆi i i i

l l l ly y V Z     

Step 4) Moving to the next iteration  

 1l l    

The number of iteration for reaching the consensus value 

depends on the scale of system and communication 

topology. 

 
Figure 1. Local and global voltage vector 

Agent structure 

In this research, we developed the agents in python, a 

high level and scientific program language. Agents are 

applications designed to compute and communicate. 

They can be connected to hardware devices or real-time 

power simulators and update measurement signals of grid 

simulation. Agents talk with neighbours by using gRPC, 

a high performance, open-source RPC (Remote 

procedure call) framework. An agent consists of an gRPC 

server and gRPC clients of servers hosted in neighbours. 

The structure of agents is illustrated in Figure 2. This is 

what happen in agents in one iteration: agent seeks the 

optimal point of the local objective, share and collect 

information with neighbors and then move to next one. 

The multi-agent system reaches the equilibrium point of 

OPF problem after a number of iteration. 

 

gRPC server

gRPC client

gRPC client

gRPC client
...

Update data from 
local node

Run ADMM 
algorithm

 
Figure 2. The structure of a single agent 

CASE STUDY 

In order to validate the proposed methodology, we used 

a 6-bus grid including 3 generators and 3 loads with 

parameters in Table 1. We chose a meshed topology 

system which is more complicated than radical topology 

to prove the precise of the method in a more general case. 

The agent based distributed OPF was deployed to 

minimize active power loss of the grid. Figure 3 

illustrates the test case grid and the inter-agent 

communication network. The multi-agent system was 

created by 6 applications running simultaneously in 

distinguish processes corresponding to 6 agents located 

at 6 buses of system. The data transmission is 

implemented through different ports under gRPC 

protocol. A range of penalty parameter   is alternately 

applied to consider the convergent performance. The 

convergence of optimal DERs active and reactive power 

output of generators is shown in Figure 4 and Figure 5. 

In all cases, the output values were reached the stable 

state but after different iterations. The results also shown 

the effect of  into the operation of agents and the 

important of choosing  . 

 
Figure 3. Testing microgrid with multi-agent system 

The system can properly achieve consensus with the best 

performance ADMM at   =25. At this value of  , the 

optimal values were found after ~300 iterations. From the 

output of agents, the total active power loss is 

0.0874lossP pu  .  In comparing with centralized 
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method using pypower 

( ) 0.0865lossP centralized pu  , the result of ADMM 

distributed method is slightly higher but almost identical 

and can be considered to improve in next works.  
Table 1. Parameter of testing grid 

Bus 
P load 

(pu) 

Q load 

(pu) 
Line 

Impedance 

(pu) 

3 0.7 0.7 
1-4 0.05+j0.2 

1-5 0.08+j0.3 

4 0.7 0.7 
2-4 0.05+j0.1 

2-5 0.1+j0.3 

5 0.7 0.7 
3-5 0.12+j0.26 

3-6 0.02+j0.1 

 

CONCLUSIONS 

In this paper, the optimal power flow problem was 

formulated and decomposed into sub-problems for 

distributed solving approach. Agent with capability of 

computation, communication and online operation was 

designed for deploying ADMM method. A test case 

system was also implemented to show the proper of the 

method and the work of agent system.  
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a) Generator 1 

 

b) Generator 2 

 

c) Generator 6 
Figure 4. Convergence of active power output of generators for different values of   

 

a) Generator 1 

 

b) Generator 2 

 

c) Generator 6 
Figure 5. Convergence of reactive power output of generators for different values of   


