
CIRED Workshop - Ljubljana, 7-8 June 2018 

Paper 0237 
 

 

Paper No 0237     Page 1 / 4 

FALLBACK SOLUTION FOR A LOW-VOLTAGE REGULATOR CONTROL 

USING ARTIFICIAL NEURAL NETWORKS 

 

 

 Haiyan MA  Wolfram H. WELLSSOW  Stefan LANG 

 TU Kaiserslautern – Germany TU Kaiserslautern – Germany Pfalzwerke AG – Germany 

 haiyanma@eit.uni-kl.de wellssow@eit.uni-kl.de stefan.lang@pfalzwerke.de 

 

ABSTRACT 

With the increase of renewable generation, violations of 

voltages or thermal limits are more likely to happen in 

particular in rural distribution networks. Instead of cost 

intensive grid expansions, other measures can be 

applied, such as transformers with on-load tap changers, 

voltage regulators or a novel regulator for power flow 

control in meshed grids. Depending on their control 

targets, these devices use remote measurement data, 

which are transferred by a communication network. 

However, in case of communication faults, the control 

processes are affected. A fallback solution using artificial 

neural networks is presented in this paper for estimating 

regulator tap positions and missing measurements. 

Simulation results show that the proposed solution is 

reliable and accurate. 

INTRODUCTION 

The increase of renewable generation, in particular 

photovoltaic (PV) systems in rural areas, and the growing 

number of electric vehicles lead to a sharp increase of 

load flows in low-voltage (LV) networks. This can result 

in voltage violations and thermal overloads of lines. For 

applications in meshed grids, a novel “Flexible Voltage 

and Active Power Regulator” (FLOW-R) was designed 

to control power flows and voltage magnitudes [1-3].  

Due to the very low number of measurement points (MP) 

and the unknown customer-dependent load flows in rural 

LV grids, the mathematical model of such a network is 

under-determined. To fulfil different control targets, the 

regulator needs to calculate the related tap positions 

based on current and voltage values from various MPs 

located at specific grid nodes. Therefore, the regulator 

communicates with these MPs to receive the voltage and 

current values. However, in case of a communication 

interruption, the regulator will not receive these 

measurements resulting in a stop of the control process. 

Hence, a fallback solution is needed. In this paper, an 

artificial neural network (ANN) is used for this purpose. 

An ANN is a mathematical model similar to but much 

simpler as human neural networks. Unlike the 

conventional predefinition of functions, an ANN can 

learn the relationships between data from observations 

[4]. ANNs are already used in network control [5-6]. 

Paper [5] uses an ANN to control the power flow with a 

unified power flow controller. Paper [6] builds a 

relationship between measured smart meter values and 

the voltages at selected buses.  

In this paper, the FLOW-R regulator is taken as an 

example to test an ANN-based fallback solution. The 

control concepts of the FLOW-R regulator are briefly 

discussed first. Then, the fallback control strategies are 

presented. Finally, the simulation set-up is introduced 

and the results are analysed. 

BASICS OF THE FLOW-R REGULATOR 

Previous works show the validity of the FLOW-R 

regulator [1-3]. The power flow in the conductor of a 

meshed grid can be controlled by injecting a pre-

calculated complex control voltage with magnitude UCV 

and angle δ. δ refers to the line-to-ground voltage angle 

at the regulator position. The analytical relationship 

between UCV and its influence on the regulator current IR 

is discussed in [1]. Based on this relationship, 

characteristic curves can be determined. They represent 

the dependency between the regulator steps and the 

controlled currents and voltages at MPs, see Fig. 1.  

 
Fig. 1: Characteristic curves for setpoint/limit control  

In case of setpoint control at MP1, the optimum UCV is 

selected for the related setpoint Iset using the 

characteristic curve at MP1. For the resulting UCV the 

related transformer tap position is calculated.  

FALLBACK CONTROL STRATEGIES 

Fig. 2 shows an actual meshed grid with 113 loads and 

38 PV systems. The FLOW-R regulator is represented by 

a transformer with adjustable voltage magnitudes and 

angles at one side. Voltages and currents at various MPs 

are selected and controlled one by one using the 

characteristic curve method.  

The application of the ANN-based fallback solution 

follows a three-step process. In the first step, data for all 

10 measurements (8 measurements from MPs and 2 from 

local measurements at the regulator) and the regulator’s 

tap positions are collected during normal operation. 
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Fig. 2: Actual LV network with a FLOW-R regulator 

In the second step, the ANN is trained with the collected 

data. In this paper the back propagation (BP) method is 

used for training. The BP method has less computational 

effort and fits well to the tasks of this paper. In the third 

step, the weights gained from the training are tested.  
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Fig. 3: ANN structure  

Fig. 3 shows the three-layer ANN structure used for this 

project. The input layer contains 9 neuros, which result 

from the 10 measurement values in step 1 and stand for 

‘known’ values. The hidden layer contains 8 neuros. The 

number of neuros for hidden layer is an empirical value, 

higher numbers increase the accuracy but may lead to 

overfitting and slow training and vice versa. Depending 

on the control set-up, the output layer contains either the 

‘missing’ values of the MP to be controlled or the tap 

positions for the regulator. 

SIMULATION AND ANALYSIS 

Simulation Set-ups 

The no-fault situation is simulated first with set control 

targets of a selected line (e.g. limit/setpoint control). 

Load and PV values are generated by a time series tool in 

15-minute time steps. The regulator’s tap positions and 

all the measurement values from Fig. 2 are collected.  

Since the sigmoid function with an output range between 

0 and 1 is applied in the ANN, the input and output values 

are scaled accordingly to get more accurate results. For 

current values, the thermal limit current of lines is 

defined as the maximum and 0 A as the minimum. For 

voltage values, °10% of the nominal voltage is defined 

as the maximum and minimum, respectively. For tap 

positions, the maximum and minimum values correspond 

to the max and min tap positions.  

The simulation results of the ANN-fallback solution are 

presented separately for offline training and online 

training. For offline training, the ANN is trained and 

applied offline and the taps/missing measurements are 

estimated. For online training, the ANN sends the 

estimated missing measurement values to the FLOW-R 

regulator which is controlled with the characteristic curve 

method. 

Offline training 

Selection of ANN Outputs 

During real operation, communication to any MP may 

fail. As an example, the communication with MP1 is 

assumed to be missing in the following. Fig. 4 shows the 

tap position estimation using ANN for this case. The 

regulator setpoint for MP1 is Iset = 40 A. The ANN is 

trained during normal operation for three weeks using the 

currents at other MPs as input and the related regulator 

tap positions as output. In Fig. 4, the communication loss 

for one week is assumed, the upper part shows the 

estimated tap positions and the true values while the 

lower part shows their differences. The small differences 

between estimated and real tap positions demonstrate the 

good performance of the ANN. 

 
Fig. 4: Error in tap position estimates from ANN 

In case of a FLOW-R, its tap positions are the most 

important information as they are the actuating variable. 

Hence, the ANN output is directly used to set the FLOW-

R while the normal control algorithm is inactive. 

However, a more generally applicable approach is to 

estimate the missing measurement values and use them 

as input for the controller. Fig. 5 presents the ANN 

estimates of the measurement values at MP1 for 

regulated operation. Again, the ANN is trained with 

regulated values for three-weeks. Fig. 5 shows the test 

values at MP1 for one-week. The upper part shows the 

true and the estimated currents from the ANN in case of 

the communication failure of MP1. The lower parts 

present the differences between the true values and the 

ANN estimation in absolute values and in percent. Two 

conclusions are obtained from Fig. 5: first, the FLOW-R 
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is able to regulate the current values of lines, and ANN is 

capable to estimate the missing measurement values with 

a maximum deviation of ±10 %. 

 
Fig. 5: ANN offline test of missing MP1 

Besides MP1, other missing MP can also be estimated as 

shown in Fig. 6. 

 
Fig. 6: ANN offline test of missing MP7 

Fig. 6 presents the estimation of MP7 with Iset = 40 A. 

The layout is the same as in Fig. 5. In this case the ANN 

estimation is more accurate compared to MP1, because 

there are other MPs close to MP7. This can be explained 

by a Pearson correlation coefficient (PCC) as shown in 

Table 1. The PCC is a way to measure the linear 

correlation between two variables [7]. When the PCC is 

closer to 1, the two variables are more linearly correlated, 

which is easier for ANN to learn. 

Table 1: PCCs of MP1 and MP7 
Control 

MP 
PCC  

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10 

1 1 0.558 0.520 0.145 0.152 0.239 0.152 0.383 0.910 0.910 

7 0.377 0.306 0.312 0.990 1.00 0.670 1 0.631 0.392 0.388 

The PCCs between regulated values in Fig. 5 and Fig. 6 

are presented in Table 1. For MP7, the correlation to MP4 

and MP5 are very high. This explains the higher accuracy 

in Fig. 6 compared to Fig. 5. 

Loss of more than one measurement 

The previous simulations are based on the assumption 

that only the values from one MP are missing. However, 

in real operation more than one communication link can 

get lost. The regulator only needs the measurement 

values from the MP where the setpoint is defined, e.g. 

MP1. But during the estimation process, additional 

communication links may get lost, possibly even all of 

them except from the local measurements at the 

regulator. In principle, the ANN could be trained 

separately for all the 128 possible combinations of the 

test system, but that would result in a too high 

computational effort. Instead, random zeros indicating 

missing MPs are introduced to the training process.  

Table 2: Test set-up and results for MP1 
 Set-up 1 Set-up 2 Set-up 3 Set-up 4 

Training with random zero No No Yes Yes 

In-/ outputs for training 9/1 9/1 9/1 9/1 

In-/outputs for test 9/1 2/1 9/1 2/1 

Mean of differences [A] -0.063 319.98 -0.081 0.700 

SD of differences [A] 1.08 2.53 1.13 1.22 

Table 2 presents the test set-ups and the mean values and 

standard deviations (SD) of the true and estimated current 

differences at MP1: 

¶ Set-up 1: train with 9 inputs/1 output, with no 

random zeros replaced; test with 9 inputs; 

¶ Set-up 2: train with 9 inputs/1 output, with no 

random zeros replaced, test with 2 inputs; 

¶ Set-up 3: train with 9 inputs/1 output, with 15% 

inputs are replaced by zeros randomly replaced; 

test with 9 inputs; 

¶ Set-up 4: train with 9 inputs/1 output, with 15% 

inputs are replaced by zeros randomly replaced; 

test with 2 inputs. 

Comparing set-up 1 and 2, they use the same information 

for training, but set-up 2 uses two inputs instead of 9. 

This causes extreme current deviations from the setpoint. 

To deal with this, random zeros are introduced in the 

training i.e. input values are randomly replaced by zeros. 

During test (application), when additional 

communications are missing, the lost inputs are replaced 

by zeros, see set-up 3 and 4. Comparing set-up 3 and 1, 

the accuracy decreases. However, comparing set-up 4 

and 2, it is significantly improved when more 

communications are lost. 

Fig. 7 and Table 3 present the results of random zero in 

case of different MPs missing. 

 
Fig. 7: ANN Test with random zero implementation, MP1 

Table 3: Results of differences for random zero 
Miss of MPs 1 1,2 1,2,3 1,2,3,4,5,6,7,8 

In-/outputs for training 9/1 9/1 9/1 9/1 

In-/outputs for test 9/1 8/1 7/1 2/1 

Mean of differences 
[A] 

-0.081 0.224 -0.50 0.70 

SD of differences [A] 1.13 1.15 1.15 1.22 

The mean and SD of Fig. 7 are presented in Table 3. 
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Based on the above results, it can be concluded that 

training the ANN with random zeros decreases the 

accuracy but allows to continue control in cases where 

more measurements get lost. 

Online training 

Training length 

 
Fig. 8: Online training of different strategies, MP1 

Fig. 8 presents the online training results of one week for 

different training strategies. The upper part shows the 

regulated currents for the true values and three different 

strategies:  

¶ Strategy a: values of one single day are used for 

training, training is done once. 

¶ Strategy b: values of seven days are used for 

training, training is done 7 times (day by day) 

¶ Strategy c: values of seven days are used for 

training, training is done once for the seven days 

The mean and SD of these three strategies compared to 

true values are summarized in Table 4. 

Table 4: Current differences for different training lengths 
Strategy a b c 

Batch size [day] 1 1 7 

Training frequency  1 7 1 

Mean of differences [A] -0.026 -0.016 0.013 

SD of differences [A] 1.88 1.71 1.78 

Strategy a shows worst results, but all the strategies are 

comparable. Therefore, big storage sizes are not 

necessary for implementation. 

Control of voltage limits 

Unlike setpoint control where the ‘regulated’ values are 

used for training, limit control needs ‘unregulated’ 

values. As ‘regulated’ measurements cannot reach the 

limits, this will lead to wrong regulation. The 

‘unregulated’ values are estimated using characteristic 

curves. In the test process, the ‘unregulated’ missing 

values are estimated using ANN, and the regulator will 

control based on the estimated ‘unregulated’ values 

together with the characteristic curves. 

For strategy b, Fig. 9 presents the online results of MP6 

voltage limit control. The ANN is trained with 7 days’ 

‘unregulated’ values and tested with other 7 days’ values. 

The regulator is able to limit the voltage of MP6 to 420 V 

and the ANN is able to estimate the true value and keep 

the limit. The voltage differences are presented in the 

lower part of Fig. 9. 

 
Fig. 9: ANN Test of limit control for MP6 

CONCLUSION AND OUTLOOK 

Based on the above simulations and discussions, it can be 

concluded that with using the ANN fallback solution the 

FLOW-R regulator can continue to act properly even in 

cases where one (or more) MPs are lost. The proposed 

ANN fallback solution can be used not only for the 

FLOW-R regulator but also for other applications since 

it estimates missing measurement values. The simulation 

results show that the usage of the ANN is a reasonable 

solution to communication interruptions. 

At switching from normal operation to the ANN fallback 

some jumps in the control values might occur. Hence, 

further work will focus on avoiding such jumps. Also, the 

question of ANN training during fallback time and the 

response to topology changes will be considered.  
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