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ABSTRACT 

This paper presents a novel approach for the prediction 

of the deployment of distributed energy resources 

(DERs), e.g. photovoltaic (PV), in the distribution grid. 

A Markov chain model is defined to predict the spatio-

temporal evolution of DERs. The predictor is trained 

with extensive data sets of PV deployment as well as 

geographic grid data. The prediction performance is 

validated on real data and found to be superior to 

standard Monte Carlo prediction. In a case study it is 

shown how DER prediction can be used for grid 

planning and quantification of self-sufficiency of 

regional energy communities.  

INTRODUCTION 

The increasing electrification of heat and mobility 

sectors together with rapidly spreading renewable 

energies enable new, multimodal operation concepts. 

Prominent examples are local energy communities [1, 2, 

3]. Such communities are self-sufficient using heat 

pumps, storage and distributed energy resources 

(DERs). Knowledge of the evolution of these DERs 

enables the planning and design of those communities. 

In particular, a high spatio-temporal resolution, 

neighboring effects, and existing distribution grids need 

to be taken into account. 

In this study, a bottom-up approach based on predictive 

analytical algorithms is proposed to analyze the spatio-

temporal growth of DERs using the example of 

residential PV. It is shown that this approach performs 

significantly better than standard Monte Carlo based 

methods.  The latter are commonly used to disaggregate 

DERs on distribution grids by making use of 

independent, identical distributions [4, 5]. 

Based on a sample prediction, a power flow calculation 

is performed and implications for the grid planning are 

discussed. Finally, the potential for self-sufficiency of 

an energy community is investigated. 

BOTTOM UP PREDICTION METHOD 

In this section, the temporal evolution of PV activation 

𝑎𝑖(𝑡) ∈ {0,1} for all households is defined by means of 

a Markov chain. Here, “1” stands for at least one 

existing PV in household 𝑖, “0” for none. Defining 𝑎 as 

the vector of all house activations, the Markov chain is 

fully defined via its transition probability              

𝑝[𝑎(𝑡 + 1)|𝑎(𝑡)]. However, solving for these 

probabilities is numerically intractable. The state space 

of the Markov chain is {0,1}|𝑎|, where the number of 

households is |𝑎| ≈ 500.000. Hence, for the matrix 𝑝                             

2106
entries would have to be calculated. In the 

following, the problem is reduced. The state space is 

confined to relevant input features and machine learning 

techniques are applied.  

In the context of diffusion of innovation major impact 

factors for the spread of novel technologies have been 

studied [6, 7]. Relevant features are:  

(i) Neighbor behavior   

(ii) Type (farms vs. private households [8])  

(iii) Regional aspects (existence of innovators 

etc.).  

This empirical knowledge is used by considering 

adequate interactions within the model. 

To abstract from a specific geographic structure, 

households are mapped as nodes on a graph. Based on 

the geographic distance of the households, the k-nearest 

neighbors of each node are defined [9]. Then, the 

feature vector 𝑥𝑖 contains the neighbor activation 𝑎𝑗(𝑡) 

up to the 7
th

 neighbor including its own state 𝑎𝑖(𝑡) 

(0𝑡ℎ neighbor). Second, the type as well as the quantity 

of the grid connections per household enter the feature 

vector 𝑥𝑖(𝑡). Third, a regional technology factor 

𝑘𝑟𝑒𝑔(𝑡) = |𝑁𝑖|
−1 ∑ 𝑎𝑖(𝑡)𝑖∈𝑁𝑖

 is defined, where 𝑁𝑖 

comprises all households of the town of household 𝑖.  
The output is defined to be the difference of PV 

activation of two subsequent time points:  

𝐶𝑖(𝑡 + 1) ≔ 𝑎𝑖(𝑡 + 1) − 𝑎𝑖(𝑡) 

With this definition one obtains: 

𝑝(𝑎(𝑡 + 1)|𝑎(𝑡)) ≈ ∏ 𝑝(𝑎𝑖(𝑡 + 1)|𝑎(𝑡))𝑁
𝑖=1                                                                  

                                  ≈ ∏ 𝑝(𝑎𝑖(𝑡) + 𝐶𝑖(𝑡 + 1)|𝑥𝑖(𝑡))𝑁
𝑖=1  

                   = ∏ 𝑝(𝐶𝑖(𝑡 + 1)|𝑥𝑖(𝑡))𝑁
𝑖=1 ,  

where the first approximation accounts for independent 

updating of PV between households, while the second 

reflects information reduction when using 𝑥𝑖 instead of 

𝑎. Finally, the resulting conditional probabilities can be 

approximated with the aid of machine learning 

techniques. 



 
Figure 1: Evolving PV diffusion. PV households marked in red and orange for real data in the years 2007 (a) and 2017 

(b), as well as a prediction for the year 2031 (c).  

 

Historic data of PV employment from 2005-2017 is 

used as training data for a neural network classifier [10]. 

One detail of the solver is crucial: cross likelihood as 

loss function is used in order to ensure probabilities, 

which reproduce realistic relative frequencies. 

Additionally, a regression neural network [10] is trained 

in order to predict installed power 𝑃𝑖  depending on the 

features 𝑥𝑖.   

By iteratively applying the transition probabilities, 

sample predictions of future PV diffusion scenarios can 

be drawn. In the following, we present examples and 

address the quality of such predictions.  

RESULTS  

A town with large PV diffusion is selected to depict the 

data as well as prediction samples. Households with PV 

(orange) and without a PV system (black) are mapped 

on a quadratic grid for different years. Households, 

which added a PV panel at different times, are marked 

in red. Figures (1a) and (1b) depict the real PV 

distribution in the years 2005 and 2017. First, one notes 

a rapid increase in total quantity of PV, which is owed 

to a massive PV boom within the years 2008 and 2012. 

Furthermore, spatial correlations are clearly visible, 

which a posteriori justifies the nearest neighbor 

approach. Figure (1c) depicts a sample prediction for 

the year 2031, where predicted PV is marked in blue. 

Again, PV build-up emerges frequently around existing 

spots. 

Next, the sensitivities of some features are investigated. 

In Figure 2 the predicted probability of a household to 

install PV (activation) is plotted for different input 

features 𝑥. The integer values 𝑘 along the 𝑦-axis refer to 

a PV activation of the 𝑘𝑡ℎ- nearest neighbor. Thereby, 

the 0𝑡ℎ- nearest neighbor is the household itself. The 

results indicate that it is most probable to install PV 

when PV is already existent on the same house. 

Moreover, the probability gradually decays with 

increasing 𝑘. On the 𝑥-axis the regional PV activation 

factor is varied. A strong positive correlation of 

𝑘𝑟𝑒𝑔 and 𝑝 becomes obvious. 

 
Figure 2: Probability for a PV build-up while varying the 

regional PV factor 𝒌𝒓𝒆𝒈 as well as PV activation of the kth-

nearest neighbor of a given household. 

The dotted line below refers to a base curve where no 

neighbor PV is activated. Although not clearly visible, it 

also increases notably with increasing 𝑘𝑟𝑒𝑔 .  

After getting an impression of the prediction and their 

dependencies, the quality of prediction is illuminated by 

means of cross validation tests. First of all, the 

validation set is defined to be PV diffusion within the 

years 2012-2014 and the training set is restricted to the 

years before. Furthermore, communities of 70 up to 130 

houses are defined, which resemble typical low voltage 

grids in Schleswig Holstein. Then, the installed PV 

power in these communities during the validation time 

period is recorded. It is compared to the expected PV 

power deployment of a random predictor based on an 

independent, identical distribution and to the previously 

defined data based predictor. 

In Figure 3 the aforementioned predictions are plotted 

for 30 exemplary communities. The data predictor 

performs better than the random predictor. In particular, 

it captures some of the very active communities, i.e. 

potential energy communities. 

To quantify this finding the correlation between 

predictions and real data is determined via the Pearson 

coefficient. Using sufficient test communities one 

obtains:  

(a) (b) (c) 
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𝜌(𝑟𝑒𝑎𝑙, 𝑑𝑎𝑡𝑎 𝑏𝑎𝑠𝑒𝑑) = 0.41 ± 0.05 

𝜌(𝑟𝑒𝑎𝑙, 𝑟𝑎𝑛𝑑𝑜𝑚) = 0.06 ± 0.02 

In conclusion, it has been shown that data exhibits 

significant correlations of PV build-up. The reasons are 

collective behavior on neighbor as well as on regional 

scale. Adequate consideration of these features 

improves prediction precision significantly; in 

particular, potential energy communities with large PV 

deployment can be identified.  

 

 
Figure 3: Comparison of validation data and prediction. 

The installed power (black) within the years 2012 and 2014 

is compared to a random (blue) and the data based 

prediction (red).  

CASE STUDY OF A POTENTIAL ENERGY 

COMMUNITY 

In this section, prediction results are used to address two 

crucial aspects of energy communities: their distribution 

grid planning as well as potential for autarchy. 

Prediction based distribution grid planning  

This case study investigates the impact of PV prediction 

on an exemplary low voltage grid with 100 households. 

In Figure 4 the distribution grid is depicted. Predicted 

PV households are marked in blue. In total, the installed 

power constitutes more than 300 kWp, where some 

farms contribute notably. Based on this grid model, a 

power flow is calculated assuming a generation case 

with minimal load per household and generators 

producing peak power. Without the predicted PV 

inflow, the workload of each cable is below 50% of its 

maximum capacity and node voltages are close to their 

nominal voltage values. Adding the predicted PV power 

leads to a different scenario (see Figure 4): There are 

three cables with critical or even highly critical 

workload as well as several households with voltage 

values out of limits. Hence, in order to enable the 

transformation to a local energy community, the 

distribution grid provider would have to strengthen this 

particular low voltage grid.  

Note that the collective nature of PV diffusion is crucial 

here: a spatially correlated PV activation in the bottom 

right stub cable string leads to voltage and workload 

violations while other strings operate within their 

technical limits.  

 

 
Figure 4: Power flow in a local energy community. 

Voltages and cable workloads become critical in hot spots, 

where correlated PV build-up is predicted. 

Self Sufficiency of Energy Communities 

In this section the potential of self-sufficient energy 

communities are assessed. Self-sufficient energy 

communities can be characterized by distributed energy 

generation and a storage potential. These communities 

aim for independence of the overlaying grid.  

In Figure 5 a load profile measured at the transformer 

between low and middle voltage grid is depicted (blue) 

as well as the total solar inflow during a typical summer 

day in Schleswig Holstein. The solar inflow apparently 

exceeds load during midday so that the battery storage 

can optimize self-sufficiency. A mixed-integer linear 

optimization model is used to analyze the impact of 

additional storage capacity on the degree of self-

sufficiency. Its objective is the optimization of the own 

consumption considering a given load profile.  

As can be seen in the inset of Figure 5 the degree of 

self-sufficiency without storage is 42%. By integrating a 

battery, it can be increased by more than 30% up to 

nearly 75%. Since total energy inflow is limited, the 

curve eventually saturates at a total battery capacity of 

650 kWh. 

 

 
Figure 5: Self Sufficiency of potential energy community. 

Load and PV power inflow is plotted on a typical summer 

day in Germany. Inset: Self-sufficiency increases when 

making use of battery storage.  
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CONCLUSION AND OUTLOOK 

In conclusion, a novel predictor of technology 

deployment has been presented. The proposed model 

was applied to residential PV power systems. It captures 

key aspects of technology diffusion, in particular 

collective interactions and, accordingly, correlated 

distributions. These properties have been shown to be 

crucial in subsequent case studies. In particular, grid 

planning becomes challenging when PV hot spots 

emerge. Furthermore, a large degree of self-sufficiency 

can be reached where these hot spots occur. 

The model itself could be extended in various 

directions. To strengthen knowledge of regional aspects, 

socioeconomic data sets can be integrated. Furthermore, 

house specific data such as roof top area and direction 

would increase the accuracy of prediction. From a 

theoretical point of view, machine learning might be 

refined. In this paper a two-step prediction is applied: a 

classifier followed by a neural regressor predict 

probabilities of installed PV power values. This way, 

one profits from the natural probabilistic nature of the 

neural classifier. However, one might directly predict 

distributions of installed power, which requires a 

posteriori Bayesian inference within neural networks 

[11]. Also, the modelling of temporal evolution of PV 

diffusion could be elaborated in future models. The 

training of a Markov chain might be replaced by, for 

example Gaussian processes [12], in order to learn 

simultaneously from the entire time series.     

Finally, it is noted that the prediction, as presented, 

emerges “bottom up”. It starts from the last known state 

iterating up to the time point of interest. However, it can 

also be applied “top down” for the spatio-temporal 

disaggregation of DERs within future scenarios. Such 

scenarios are often generated for political decision 

making. In this case, one applies transition probabilities 

until a certain target quantity is reached (i.e. 20% PV) 

and extracts spatial distributions as before. 

ACKNOWLEDGEMENTS 

The authors acknowledge funding by the Kopernikus 

project ENSURE with project number 03SFK1D0. We 

thank Dr. Joachim Kabs, the boarding member of 

Schleswig-Holstein Netz AG, for his great support. 

 

REFERENCES 

 

[1]  T. Falke, S. Krengel, A.-K. Meinerzhaben, and A. 

Schnettler, 2016 "Multi-objective optimization and 

simulation model for the design of distributed 

energy systems", Applied energy, vol. 184, 1508 - 

1516.  

[2]  G. Walker and P. Devine-Wright, 2008, 

"Community renewable energy: What should it 

mean?", Energy policy, vol. 36.2, 497-500. 

[3]  G. Doci, E. Vasileiadoua, and A. Petersena, 2015, 

"Exploring the transition potential of renewable 

energy communities", Futures, vol. 66, 85-95.  

[4]  S. Simoes, M. Zeyringer, D. Mayr, T. Huld, W. 

Nijs, and J. Schmidt, 2017, "Impact of different 

levels of geographical disaggregation of wind and 

PV electricity generation in large energy system 

models: A case study for Austria", Renewable 

energy, vol. 105, 183-198.  

[5]  A. Navarro, L. F. Ochoa, and D. Randles, 2013, 

"Monte-Carlo-based assessment of PV impacts on 

real UK low voltage networks", IEEE, 1-5.  

[6]  S. Linder, 2013 "Räumliche Diffusion von 

Photovoltaik-Anlagen", PhD-Thesis, Würzburg, 

Germany.  

[7]  E. M. Rogers, 2010 "Diffusion of innovations." 

Simon and Schuster, New York, USA  

[8]  A. Gonzalez Quintairos, J. Bühler, B. Kleinschmit, 

and M. Resch, 2015, "Analysis of Potential 

Distribution and Size of Photovoltaic Systems on 

Rural Rooftops", GI_Forum,  220-224.  

[9]  M. Ballerini, N. Cabibbo, R. Candelier, A. 

Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. 

Orlandi, G. Parisi, and A. Procaccini, 2008, 

"Interaction ruling animal collective behavior 

depends on topological rather than metric distance: 

Evidence from a field study", PNAS, vol. 105, 1232 

- 1237.  

[10]  F. Pedregosa, G. Varoquaux, A. Gramfort, V. 

Michel, B. Thirion, O. Grisel, M. Blondel, P. 

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, 

A. Passos, D. Cournapeau, M. Brucher, M. Perrot, 

and E. Duchesnay, 2011, "Scikit-learn: Machine 

Learning in Python", Journal of Machine Learning 

Research,12. Oct., 2825-2830.  

[11]  D. C. Knill and A. Pouget, 2004, "The Bayesian 

brain: the role of uncertainty in neural coding and 

computation", TRENDS in Neurosciences, vol. 

27.12, 712-719.  

[12]  C. E. Rasmussen, 2004, "Gaussian processes in 

machine learning", Springer, Heidelberg, 

Germany.  

 

 

 

 

 

  


