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ABSTRACT 

This work develops a home energy management system 

(HEMS) for regions where load shedding exists. The 

hardware of HEMS is mainly made from second-life 

materials, hence it is cheap enough for the low-income 

families to use. A cloud platform is developed to remotely 

communicate and manage the battery controlled by the 

HEMS. A multi-objective optimisation model is proposed 

to consider the trade-off between reliability improvement 

and bill reduction in places with time-of-use (TOU) 

pricing. Case studies are conducted through a simulation 

approach considering scheduled and unscheduled load 

shedding. The result shows that the HEMS can provide 

essential power supply during load shedding periods and 

reduce customers’ electricity bills. The feasibility of the 

product has been tested in Botswana through a project 

with grant support from Innovate UK, EMBOSSA. 

INTRODUCTION 

The nature of the electricity system in most Sub-Saharan 
African (SSA) countries can be summarised as low 
security and high cost. Load shedding (also called rolling 
blackout) is a routine part of everyday life in more than 
30 countries. Data from African Development Bank 
Group indicates that frequent power outages mean big 
losses in forgone sales and damaged equipment - 6 % of 
turnover on average for formal enterprises, and as much 
as 16% of turnover for informal enterprises unable to 
provide their own backstop power. From an economic 
point of view, the cost of electricity in some SSA 
countries (for example Djibouti and Gabon) are among 
the highest in the world [1].  
Improved electricity reliability and reduced electricity 
bills are critical for the development of power sectors in 
SSA. A home energy management system (HEMS) is an 
intelligent technology that responds to the signals 
received from the grid by shifting or reducing the 
electricity load using energy storage [2]. Taking 
advantage of smart meters and new battery technologies, 
HEMS has quickly become a promising solution to the 
energy issues [3]. By controlling the charging and 
discharging cycles of the battery, demand will be shifted 
to avoid peak-time tariff and load shedding [4]. 
According to previous studies, HEMS can be divided into 
two categories: planned energy management and real-
time energy management [2]. The former determines an 
optimal dispatch plan based on forecasted information. 
[2]. A classic model of this category is the day-ahead 

dispatch. The performance of this type of models is 
limited by the forecasting error. To overcome this issue, 
real-time energy management models are proposed [5]. 
However, a “greedy” planning algorithm only considers 
the locally optimal solution for the immediate time 
interval: it does not consider the influence of short term 
actions on future steps, through such constraints battery 
state of charge. This paper proposes a combined day-
ahead and event-driven model. The next day’s demand 
and price will be forecasted as well as the scheduled load 
shedding information. The optimisation will be 
implemented to minimise the overall cost of the day. If 
an unscheduled load shedding occurs, the optimisation 
will convert to a real-time management model till the 
load shedding ends.  
The optimisation methods can be classified according to 
the nature of the objective. The primary objective of most 
HEMS is to save consumers’ energy bills [6]. Dynamic 
programming technology is used for home energy 
management [6]. Other common dispatch objectives 
include reducing network congestion [7] and minimizing 
renewable curtailment [8]. This paper proposes a multi-
objective optimisation which will be implemented to: i) 
save customers’ energy bills, ii) reduce the risk of 
unscheduled load shedding; and iii) provide essential 
supply when it happens. The main challenge encountered 
is the uncertainty of the demand and load shedding. The 
optimisation module will consider unscheduled load 
shedding using the combined day-ahead and event-driven 
model. The trade-off between two functions, saving the 
electricity bill and increasing supply reliability, is 
reflected in the multi-objective optimisation through two 
weight coefficients which can be adjusted according to 
customer’s preference.  

ARCHITECTURE OF THE PROPOSED 

HOME ENERGY MANAGENMENT SYSTEM 

Fig. 1 shows the proposed HEMS with two main 

functional modules, home battery system (HBS) and 

cloud service system (CSS). The HBS uses recycled 

materials including second-life car batteries and 

smartphones. It can serve at a low cost and is affordable 

even for poor households in SSA. The smartphone 

monitors the system status such as battery’s state of 

charge and state of health. It also controls the battery to 

charge or discharge via a controller. The HBSs will 

interchange data with the CSS via the JavaScript object 

notation (JSON) data format through the mobile 

communication network. The data received by CSS 
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Fig. 1. Framework of proposed home energy management 

system. 

include load shedding information published by the 

electricity supply companies, batteries’ status and local 

tariff, demand, weather and network conditions. The CSS 

will forecast the load profiles and the price tariff of the 

homes for the optimisation model.  The HBS will receive 

commands from the CSS and be dispatched accordingly.  

THE CLOUD SERVICE SYSTEM  

Similar-day-time load forecasting 

In this study, we adopt a similar-day-time moving 

average method to forecast the load profile of a home. To 

forecast the load at time t on day d, the weighted average 

load on the same day of previous weeks will be 

considered. Also, the load at the same time t of previous 

days will also be taken into account.  
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Where, W(d,t) is the load in the weekly format, which 

indicate the load of the dth day and tth time in a week, d 

is the index of the day of the week, d = 0, 1, …, 6. t is the 

time of the day in half hour, t = 1, 2, ..., 48. D(t) is the 

load in the daily format. α = [0,1] is a weight to balance 

the week’s average and the day’s average, when α = 0, it 

will ignore the influence of similar days, on the other 

hand, if α = 1, the week’s part will be ignored. 

Real Time Tariff  

By Real Time Tariff we mean a tariff-making model in 

which the price of electricity varies over time and is 

usually designed for 48 half hours over a day. For (in 

contrast) a flat electricity price tariff, customers will use 

the appliances regardless of the time. However, for the 

dynamic real-time tariff structure, customers are 

encouraged to optimise their energy consumption 

response to changes in the network. The Fig. 2 shows a 

real-time tariff developed in UK [9].  

Optimisation model in HEMS 

A. Economic Cost Function 

The objective is to determine the optimal amount and 

 
Fig. 2. Half hour price of electricity on weekday and weekend. 

time of the charging and discharging actions of the 

battery in order to minimise the overall cost meanwhile 

maintaining the supply over load shedding periods and 

physical constraints of the battery. The overall cost 

includes the electricity cost and battery depreciation cost. 

The objective function can be expressed as follows: 
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Where, Ct is the electricity price; Pload is the forecasting 

load of consumer; Pch,t, Pdch,t are the charging and 

discharging power of battery; SOCt is the state of charge 

of the battery; SOCmax is the maximum SOC of the battery; 

λt is a penalty coefficient in regard to battery SOC, which 

is intended to support energy security; Cbat,t is the battery 

depreciation cost, given as: 

cyclebattdchtchtbat NETIPPC max,,, 2/)(   (3) 

Where, Ibat is the investment cost of battery; ΔT is the 

length of a timeslot; Emax is the capacity of battery; Ncycle 

is the standard cycle life of battery.  

B. Constraints for battery 

The charging and discharging power are constrained 

between zero and the maximum power of the battery: 

, ,max0 ch t chP P   (4) 

, ,max0 dch t dchP P   (5) 

The step change of SOC is constrained by the maximum 

changing rate as expressed in (6) and the upper and lower 

bounds of SOC are also constrained in (7): 
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maxmin SOCSOCSOC t   (7) 

In order to ensure the introduction of HEMS will not 

create another peak load, a peak load constraint should be 

added as: 
},...,2,1|max{ ,,, ttloadtloadtch NtPPP   (8) 

If there is a scheduled load shedding, HEMS should 

provide as much power as possible during the power 

outage. Hence, it need a constraint for the total stored 

energy by the end of online interval: 
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Where, Pch,max, Pdch,max are the maximum charging and 

discharging power; ηch,max, ηdch,max are charging and 
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discharging efficiency; Eload is the total load during the 

future offline period. 

C. Dispatching method 

In order to dispatch the HBS on time, the load shedding 

information, the state of charge and state of health of the 

HBS will be updated and sent to the CSS every 5 minutes. 

Fig. 3 shows the flowchart of the proposed dispatching 

method. If the state of grid is changing from off to on, it 

will trigger an event-based dispatch immediately, 

reflecting the recovery from a load shedding. The day-

ahead dispatch is a time controlled event. When the time 

is half of the interval of the update period (2.5 minutes in 

this case) to the midnight, the day-ahead dispatch will be 

updated. The optimisation system will schedule the 

dispatching of battery for the next two days if no load 

shedding is scheduled. The minimal length of the 

dispatching is 48 points (24 hours), and the maximum is 

96 points (48 hours). If there is a scheduled load shedding 

within 48 hours, only the duration between midnight and 

the load shedding will be dispatched by the optimisation 

system. The electricity price in the dispatched period will 

be forecasted based on the tariff data. The similar-day-

time moving average method will be used to forecast the 

load profile of the home. If there is a scheduled load 

shedding, the essential energy required during the load 

shedding period will be considered as another input for 

optimisation. This process will iterate until a stop 

command is set to the HEMS. 
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Fig. 3. The flowchart of proposed dispatching method. 

CASE STUDY 

In the test, a second-hand vehicle battery with capacity of 

1 kWh is used to build the HBS. The maximum charging 

and discharging power of the battery is 0.2kW. The 

charging and discharging efficiency are both 0.88. The 

depreciation of the battery is £5 per cycle. Six days of 

load profiles are randomly simulated for a home. Two 

load shedding events are simulated where the first one is 

scheduled at period from 61th half-hour (hh) to 79hh, and 

another is unscheduled, from 161hh to 173hh as shown 

in Fig. 4(a). During the 6 days, the CSS updated the 

dispatching strategies (D1 to D7) for the HBS as shown 

in Fig. 4(b). D1 is the initial dispatching and D2 is a day-

ahead dispatching. Both D1 and D2 ended at 61hh when 

the scheduled load shedding happened. The system 

updated itself by D3 to take account of the load shedding 

event. D4, D5 and D7 are the regular day-ahead 

dispatching. When there is a new dispatching action, the 

overlapped part with previous dispatch will be replaced 

by the new one. Fig. 4(c) shows the result of the charging 

or discharging power for the battery. 

 
Fig. 4. Dispatching for HEMS in 6 days with a scheduled load 

shedding (61hh ~79hh) and an unexpected load shedding 

(161hh ~ 173hh) (a) state of grid (b) dispatching events (c) 

charging or discharging load for the battery. 

The dispatching action D3 (80hh~144hh) is zoomed in 

Fig. 5(a). When the load shedding ends at 80hh, the 

battery starts charging regardless of the high electricity 

price till the SOC reaches a safe level at 83hh. This is to 

ensure the minimum SOC in case of another load 

shedding. The charging stops from 83hh until the price 

goes to a lower range at 100hh.  

 
(a) Event-based dispatching (D3) 

 
(b) Day-ahead dispatching (D4) 

Fig. 5. Dispatching actions D3 and D4 

However, when the time of CSS receives a message from 
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HBS within half of the update interval (the update 

interval is 5 minutes in this study), a new dispatching, D4 

(97hh~192hh) as shown in Fig. 5(b), will replace the part 

overlapping with D3. This is to reflect the updated 

information on the battery and the forecasted price and 

load. The results of the simulation is shown in Fig. 6. The 

demand (blue line) is the power consumed by the user 

and the real (red line) is the power withdrawn from the 

grid. The result shows that the demand at peak-time is 

shifted and the HBS provides supply when load shedding 

happens. At the beginning and the ending of the 

simulation, the SOCs of the battery are kept at 100%.  

 
Fig. 6. Simulation results of cost and load for a HEMS in 6 

days with a scheduled load shedding (61hh ~79hh) and an 

unexpected load shedding (161hh ~173hh). 

Table I lists the benefit analysis of the proposed method. 

Customer with the HEMS saves £0.024 over the testing 

period and received essential power supply during a total 

of 16-hour load shedding period.   
Table. I. Statistics table of cost and extra supply time in the 

simulation.  

Time 
Electricity cost(£) Extra supply 

time (hour) Demand Real Saving 

1hh~48hh 1.378 0.740 0.639 0.000 

49hh~96hh 0.596 0.678 -0.082 9.500 

97hh~144hh 1.535 2.063 -0.528 0.000 

145hh~192hh 1.254 1.253 0.001 6.500 

193hh~240hh 2.006 2.012 -0.006 0.000 

241hh~288hh 1.179 1.179 0.000 0.000 

Total 7.948 7.924 0.024 16.000 

FIELD TESTING 

We went to Botswana, a country in SSA. There we 

procured a used car battery and a used smartphone, and 

we assembled them (with a minimum of special-purpose 

battery management hardware) into an HBS. We 

demonstrated the HBS communicating with and being 

directed by the CSS via a local GSM network and the 

Internet. We also simulated unscheduled load shedding, 

during which the HBS powered essential domestic 

lighting and other DC domestic services. 

CONCLUSIONS  

In this study we proposed a home energy management 

system for domestic customers with load shedding and 

cost-sensitive. The HBS is dispatched by multi-objective 

optimisation based on the energy price, scheduled load 

shedding and predicted load demand. The HEMS will 

provide the essential supply during power cuts, and help 

them to reduce energy bills. It also helps electricity 

companies to make fewer power cuts during peak time. 

The recycled hardware used in the system will not only 

stimulate local recycling economy but also reduce air 

pollution by enabling local poor households to reduce the 

use of kerosene. 
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