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ABSTRACT 

With the aim of increasing the penetration of 

renewables in the energy matrix, microgrids could play 

a major role. However, microgrids powered by 

renewable energy sources bring along a higher level of 

uncertainty, derived from the stochastic nature of this 

type of energy sources. The fact of having an uncertain 

production along with the usually-uncertain 

consumption in this type of electric systems, poses 

different challenges for their management in terms of 

power quality, planning and scheduling, among others. 

This work presents an approach to deal with this 

uncertainty in a PV-powered microgrid, particularly for 

its energy management, with the aim to improve its 

performance. 

INTRODUCTION 

The general problem addressed in this work concerns 

most of microgrids that use renewable energy sources 

(RES). Due to the stochastic nature of the weather and 

consumers, the net-demand (ND) of any microgrid that 

includes RES is uncertain. This means that there is 

always a difference between the real and forecasted ND.  

The ND is defined in this case as the difference between 

the total consumption and total generation. That said, if 

a predictive energy management approach is used (i.e. 

using ND forecasts to obtain the optimal setpoints of 

resources in advance), it is required to have one element 

to compensate differences between real and forecasted 

ND. This implies that this element will not be following 

any optimal strategy whatsoever. If the use of this 

element has a marginal cost (as it is normally the case), 

this will lead to a suboptimal performance of whole the 

system. A great part of the state-of-the-art energy 

management systems (EMS) for microgrids work using 

this predictive-management approach [1][2][3]. The 

present proposal addresses the uncertainty problem 

differently. Given that the ND (for a given time period 

T), becomes known once T  has already passed, a 

method is proposed to use this past information in the 

EMS, so that it can optimally take it into account in the 

planning for the next timestep T+1. 

 

This is possible by adding an extra element called the 

uncertainty reserve (UR) and by changing the 

paradigm of working based on a predictive approach to 

a deferred (corrective) one. In the following sections the 

study-case, experimental setup and tests performed are 

described and results are discussed. 

CLOSED-LOOP UNCERTAINTY RESERVE  

The approach hereby presented has been called Closed-

Loop Uncertainty Reserve (CLUR), as it succinctly 

alludes to the operating principle behind it. As depicted 

in Fig.1 the key element in this proposal is an additional 

energy storage unit, called uncertainty reserve (UR).  

 

 
Fig.1: Integration of the operating reserve in the EMS 

of a microgrid under a closed-loop approach 

Main storage vrs uncertainty reserve 

One of the most popular technologies used as main 

energy storage (MES) in microgrids nowadays are 

batteries, due to their high energy density and lower cost 

[4]. Batteries have a nominal cycling life 

(charge/discharge cycles) that is reduced as a function 

of the depth-of-discharge (Dod) and rate-of-discharge 

(Rod) of every cycle. The levelized-cost-of-electricity 

(LCOE) produced in a MG (that includes batteries as 

MES) strongly depends on the lifespan of the battery 

unit, as it represents one of the most expensive elements 

in the balance of system; thus, the importance of doing 

an optimal management of it. There are other energy 

storage technologies whose nominal cycling-life is 
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much higher than batteries and not dependent on the 

Dod. One example of these technologies is 

supercapacitors (SCs). The required capacity of the UR 

is expected to be small enough as to allow the use of 

SCs (or  an equivalent technology) in a cost-effective 

way. Given the little dependency between the lifespan 

and Rod/Dod in SCs, it is considered valid to assign 

only a capital cost to the UR, given that that the 

marginal cost derived from its usage is negligible. The 

latter point, introduces the most important difference 

between the MES and the UR which is that the MES is 

scheduled by the EMS whereas the UR is not. The 

reason is that the MES has a marginal cost-of-use 

whereas the UR does not, making dispensable the 

optimal management of the latter. 

The uncertainty reserve in the energy 

management loop 

The UR can be considered almost invisible to the EMS, 

except for its ∆SoC, which is the only feedback that 

links the UR and the EMS. Any EMS that performs 

optimal scheduling should include, as one of its 

constraints, the power balance of the system. It is 

precisely in this constraint, where the ∆SoC of the UR is 

included as an additional term, as seen in Eq. (1). In this 

manner, every time the EMS performs the optimization 

for the next time step T+1, the system tries to bring 

back the SoC of the UR to its initial state. This is 

expected to assure convergence of the SoC of the UR, 

as long as the optimization period T, and the capacity of 

the UR are properly chosen. This is also the reason why 

this proposal is considered a closed-loop approach, as 

the changes on the SoC of the UR are fed back into the 

EMS control loop.  
∑ 𝑃𝑖 − ∆𝑆𝑜𝐶 = 0    (1) 

where 𝑃𝑖 represents the power of every resource of the 

MG.  

This constraint must be assured at any moment during 

operation and includes the information about the 

uncertainty of the ND forecasts through the  ∆𝑆𝑜𝐶. 

Advantage of the CLUR approach 

The inclusion of the UR permits all the other resources 

of the MG to be optimally scheduled and dispatched, 

regardless of the mismatch between forecasted and real 

ND. In this way, the system finds the optimal route of 

action for the MG as a whole, taking into account the 

real ND conditions, and assures that all the elements of 

the MG actually follow that optimal plan. It is also 

important to highlight that CLUR is not an EMS in 

itself; it acts in parallel to it. This allows CLUR to be 

implemented independently of the EMS algorithm being 

used, to improve the performance of the system. 

However, the EMS must meet some conditions that are 

pointed out in the following section.  

Conditions of applicability 

The CLUR proposal here presented, might lead to an 

increased performance of a MG that has implemented 

an EMS, independently of what performance objectives 

are sought. However, some conditions should be met so 

that it makes sense to use the CLUR approach. These 

conditions are: 

EMS 

Currently, energy management systems can be divided 

in three main categories: ruled-based (i.e. fuzzy logic), 

optimization-based (i.e. LP or MILP) and statistical (i.e. 

machine learning) [1]. The CLUR approach is meant to 

work with energy management systems of the second 

category, assuring a global optimal solution.  

UR technology 

The technology chosen for the uncertainty reserve, has 

to be one whose lifetime is barely influenced by Dod, 

Rod or number of cycles during operation. As 

mentioned in a previous section, there are some 

technologies that meet these requirements such as SCs. 

Forecasts 

It is required to have access to forecasts of generation 

and consumption with an acceptable level of accuracy 

and with estimations of their uncertainty.  

Stochastic variables 

The CLUR approach must be applied to all the 

stochastic variables of the system. In the particular 

study-case presented here, the only stochastic variable 

considered is the net demand. 

 
Fig.2: Dependency between the daily operation cost and 

the capacity of the MES in the study-case MG. 

 

Potential increase of performance 
Since the CLUR approach proposes to add an extra 

energy storage element in the MG (the UR), one could 

question what would be the performance of the MG if 

this UR capacity is assigned to the MES, instead of 

implementing the CLUR approach. To answer that 

question it is important to note that almost every MG 

has a characteristic curve of performance as a function 

of the capacity of its MES. That relation depends on 

many factors such as the resources and architecture of 

the MG, the EMS being used and performance 

objectives, among others. Fig.2 shows the characteristic 

curve of the study-case MG used in this work. It can be 

noted that the system achieves a certain state of 

saturation after which, further increases in the MES 

capacity do not necessarily bring further increase of 

performance. Since every MG responds differently, only 

a case-specific test would confirm the usefulness (or 

not) and advantage of the CLUR implementation over 

the simple increase in the MES capacity. 
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STUDY CASE 

Description of the system, data and 

experimental setup 
The study-case MG is composed of a load (1.5kWp), 

photovoltaic generation (1.5kWp), a battery (6kWh), a 

bidirectional grid connection (1.5kWp) and the UR. The 

system is depicted in Fig.3. 

 
Fig. 3: Resources of the proposed study-case microgrid 

The battery is allowed to work between 20-90% of its 

nominal capacity and its initial SoC is 55%. For this test 

UR is considered to have an unlimited capacity. All the 

elements of the microgrid are emulated using 2.2kW 

fully-programmable bidirectional inverters and a DC 

power source. Tests are performed in the Microgrids 

Laboratory at Aalborg University, Denmark. A picture 

of the hardware setup described above is shown in 

Fig.4. 

 
Fig.4: Experimental setup (Microgrids Lab, AAU) 

The hourly electricity prices used are considered 

deterministic and available day-ahead. For the sake of 

simplicity, prices are considered equal for buys and 

sells. Day-ahead spot prices in Denmark are used and 

taken from the Energinet group website 

(https://www.energidataservice.dk).  Measurements of 

solar irradiance to compute the PV production for the 

Aalborg University site are taken from the AAU 

weather station of the PV Systems Laboratory. The 

solar irradiance forecasts for the same site are provided 

by the European Centre for Medium-Range Weather 

Forecast (ECMWF). Two sample weeks are used 

regarding PV production (7-13 Jan & 8-14 Jul 2013). A 

sample week dataset of individual-household electric 

power consumption (in 5-minute intervals) is taken 

from the Center for Machine Learning and Intelligent 

Systems (http://archive.ics.uci.edu/ml). For the sake of 

simplicity, consumption is considered deterministic. 

Production and consumption data is scaled to respect the 

maximum limits of the power inverters. 

 

EMS and optimization problem 

A simple optimization-based EMS has been 

implemented as a linear programming problem, whose 

objective function is to minimize the operation cost 

(OC) of the MG. In this case, the OC is reduced to the 

cost of the electricity exchanged with the main grid (that 

allows buys and sells). This is stated in Eq. (2). 

𝑀𝑖𝑛 𝑓(𝑃𝑔𝑟𝑖𝑑) =  ∑ ∆𝑡 ∙ 𝑃𝑜𝑤𝑒𝑟𝑔𝑟𝑖𝑑
ℎ ∙ 𝑃𝑟𝑖𝑐𝑒ℎ𝐻

ℎ=1          (2) 

where the optimization horizon H  is 24h (or the rest-of-

day) and the Power is an hourly average. 

The constraints imposed for the optimization are 

presented in Eq. (3a-3f). This set of constrains are met 

for every time step and assure: the energy balance of the 

system, sustainability in time of the SoC of the MES, 

respecting the maximum and minimum SoC limits of 

the MES and respecting the power limits of the inverters 

(i.e. power limits of the lines). 

𝐸𝑀𝐸𝑆 + 𝐸𝑔𝑟𝑖𝑑 + 𝐸𝑃𝑉 + 𝐸𝑙𝑜𝑎𝑑 + ∆𝑆𝑜𝐶𝑈𝑅 = 0             (3a) 

𝑆𝑜𝐶𝑀𝐸𝑆
𝑖𝑛𝑖 = 𝑆𝑜𝐶𝑀𝐸𝑆

𝑒𝑛𝑑                                                      (3b) 

𝑆𝑜𝐶𝑀𝐸𝑆
𝑡 + ∆𝑡 ∙ 𝑃𝑜𝑤𝑒𝑟𝑀𝐸𝑆 ≤ 𝑆𝑜𝐶𝑀𝐸𝑆

𝑚𝑎𝑥                       (3c) 

𝑆𝑜𝐶𝑀𝐸𝑆
𝑡 + ∆𝑡 ∙ 𝑃𝑜𝑤𝑒𝑟𝑀𝐸𝑆 ≥ 𝑆𝑜𝐶𝑀𝐸𝑆

𝑚𝑖𝑛                         (3d) 

𝑃𝑀𝐸𝑆
𝑚𝑖𝑛 ≤ 𝑃𝑀𝐸𝑆 ≤ 𝑃𝑀𝐸𝑆

𝑚𝑎𝑥                                               (3e) 

𝑃𝑔𝑟𝑖𝑑
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑟𝑖𝑑 ≤ 𝑃𝑔𝑟𝑖𝑑

𝑚𝑎𝑥                                               (3f) 

TESTS AND RESULTS 

Two sample weeks (summer and winter) in the AAU 

site are chosen to emulate the scenarios. Day-ahead 

forecasts are considered to be available at midnight of 

each day, when the first optimization is run. When 

CLUR is implemented, this optimization is run every 

hour (with a time horizon up to the end of the current 

day) in order to compensate the changes on the SoC of 

the UR of the previous hour. Tests are run for the entire 

week after which, the total operation cost is computed. 

This is the metric of performance chosen for this 

experiment. For the sake of simplicity, no cost or aging 

due to battery usage is considered. 

 
Fig.5: Grid power profiles and electricity prices with 

and without the CLUR implementation 

 

Performance tests 

In the first part, an optimal scheduling for the battery 

and grid usage is obtained based on day-ahead PV 

https://www.energidataservice.dk/
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production forecasts. This is done for 7 days for each 

sample week. In Fig.5, the grid power profiles for one 

day in summer are shown. In blue is the optimal power 

profile obtained based on day-ahead forecasts; in yellow 

is the profile of the grid when is left free as the 

compensating element (only battery power profile fixed) 

and in red is the grid power profile when the CLUR is 

implemented. It is also shown in green the hourly 

electricity prices along the day. It is interesting to note 

how the grid power profile, once CLUR is implemented 

and run in real conditions, follows very closely the 

profile obtained with the day-ahead forecasts, leading 

even to a slightly better performance by the end of the 

week. When the grid is left free as the compensation 

element, it ends up following a sub-optimal profile with 

respect to electricity prices and surpassing the power 

limits imposed, which is reflected on its poor 

performance by the end of the week (winter and 

summer), as shown in Table 1. 

Table 1: Weekly operation cost of the MG 

Optimal 

cost(€/week)* 

Summer week Winter week 

Real ND (CLUR) -1.05 0.52 

Real ND -0.8 (-19.3%) 0.77 (-32.5%) 

Forecasted ND -0.99 (-6%) 0.55 (-5.4%) 
*Negative prices account for sales of electricity, profits. 

The operation costs reflect the expected behavior in 

which the MG with the CLUR implementation performs 

better than the system when the grid is not following 

any optimal strategy. It is also interesting to note that 

the CLUR implementation make the MG perform better 

even with respect to the optimal case (when only 

forecasts are used for the scheduling). However this 

cannot be generalized and more tests under different ND 

scenarios are required to validate this result.  

 

UR SoC stability 

 
Fig.6: Correlation between changes in the SoC of the 

UR and PV-mismatch between forecast and real data 

The first attempt to implement CLUR was on a daily 

basis (run the optimization only once a day). In this 

case, divergence on the SoC of the UR was the norm. 

Mismatches in the daily ND become too big for the 

optimizer to find a feasible solution. Then, the 

optimization period is reduced to one hour and the 

system becomes stable (for the sample weeks studied). 

In Fig.6 the changes on the SoC of the UR are shown 

throughout the summer week, as well as the mismatches 

in the PV production. It is clear the correlation between 

variations in the SoC and mismatches between 

forecasted and real ND. It is important to recall that in 

this experiment consumption is considered 

deterministic; being PV production the only variable 

that adds stochasticity to the ND. During operation, the 

UR shows its capacity to recover from strong variations 

on its SoC due to mismatches in the ND and come back 

to (almost) its initial SoC by the end of the week. 

However, further tests under different ND scenarios are 

required to validate this condition. The peak-to-peak 

∆SoC of the UR found is around 1kWh (16% of the 

nominal capacity of the MES), which would be the 

minimum capacity required for its proper operation in 

this particular study-case. 

SUMMARY AND FUTURE PERSPECTIVES 

The CLUR approach led to a better performance of the 

MG compared to the deterministic EMS used as 

reference, in both summer and winter weeks. However, 

it is clear that this cannot be taken as complete 

validation of the proposal, as many other state-of-the-art 

EMS (including stochastic ones) should be tested out 

and compared with the hereby presented approach. 

Also, different arquitectures of MG, with different 

optimization and performance objectives should be 

explored. A more detailed model of the MG including 

losses and battery cost and aging models would be 

desirable. Regarding stability, the system shows 

convergence of the SoC of the UR for the two weeks 

tested, when optimizing every one hour. On the 

contrary, the system becomes unstable when 

optimization is run once a day. A sweep is desirable to 

find out the optimal time period to perform the 

optimization, to achieve the best results in terms of 

convergence, performance and costs (capacity of the 

UR). The online sizing of the UR, based on uncertainty 

estimations of ND forecasts, is another subject to 

explore, in order to optimize the usage of the storage 

capacity available, with the aim to attain further 

improvements in performance of the MG.  
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