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ABSTRACT 

The multiplication of flexible loads into electrical power 

systems allows to develop distributed optimisation 

techniques. The goal is to achieve the best compromise 

between the individual objectives of each load and the 

general interest which could be for instance the safety of 

the grid or the efficiency of the power generation. 

However the algorithms of distributed optimisation 

mostly rely on an iterated exchange of information, such 

as the dual variable and the decision of each agent. This 

exchange therefore supposes a bidirectional 

communication which cannot be considered as granted 

in operational contexts. This paper investigates the 

utilisation of the Alternating Direction Method of 

Multipliers under restricted exchanges of information. 

The case study consists in an electric vehicle fleet which 

has to comply with a maximum power limit. It is 

established that a close to optimal behaviour can be 

achieved using frequent broadcast messages instead of 

duplex communication. 

 

Keywords: Electric vehicle fleet, Alternating Direction 

Method of Multipliers, Stochastic Dynamic 

Programming.    

INTRODUCTION 

The diversification of the electrical devices pave the way 

to a potential increase of the electricity demand, in 

particular because of the growth of electric vehicles. This 

increase of the consumption compels to develop a 

sustainable power generation so as to ensure the 

relevance of electric mobility from well to wheel. In 

addition channelling this electricity down to vehicle 

charging stations may bring a significant overload on the 

grid. The sizing of the transport and distribution networks 

have not been done accordingly.  In particular the 

charging of numerous vehicles in residential areas could 

make the peak consumption unbearable for both 

production units and distribution systems.  

However new electricity consumers such as electric 

vehicle offer some levels of flexibility. Indeed their 

consumption consists in the charging of a battery which 

can be shifted in time. This shift has no consequence on 

the service provided to the user, assuming he announced 

a departure time when he expects his vehicle to be 

charged. This characteristic is shared with other flexible 

consumptions such as heating, but electric vehicles may 

also be temporary discharged. This discharge could 

relieve stress on generation units and transport lines. 

Thus some situations could avoid to strengthen their 

infrastructures or to delay this adaptation [1]. However it 

will also bring a greater ageing of the battery in 

comparison with a charging only focused on the 

minimisation of the battery losses and ageing. It is 

therefore mandatory to evaluate this additional decay and 

to compare it to the service provided to the grid.  

As the impact of electric vehicles on a grid cannot be 

significant but if many act jointly, many studies have 

tackled the distributed control of electric vehicle fleets 

[2-3]. However the distributed optimisation methods 

widely assume a context where communication is 

possible, fast and free of charge, between vehicles and/or 

between vehicles and a central agent. Then an iterative 

resolution of the problem can be carried out and the 

solution is enforced once the algorithm converged.  

However in the operational context of an electric grid, 

this free and fast communication becomes a very strong 

hypothesis. It would mean to build a communication 

network alongside the power network, or to use existing 

communication infrastructures with inherent risks of 

delay and loss of information.  

The scope of this study is to investigate the distributed 

optimisation of the charging of an electric vehicle fleet. 

The resolution of this problem is first presented to build 

a reference case under the assumption of a bidirectional 

communication between each vehicle and a central agent. 

Then only broadcast signals are supposed to be possible. 

Such signal could be for instance send through power line 

communication within a distribution district which is 

supplied by a single substation. Next section will 

introduce the optimal charging problem and the 

considered case study. The resolution algorithm will also 

be presented, in a general case and in the restricted 

communication context.  Then the third section will 

present the resolution of the problem that each vehicle 

has to solve, as required by distributed optimisation 

frameworks. The last section will finally present and 

discuss the results.  

OPTIMAL CHARGING PROBLEM UNDER A 

MAXIMUM POWER CONSTRAINT 

Problem Presentation 

The case study that is here considered is a distribution 

district. The substation which supplies the district has a 

rated power Prated. A non-flexible component of the 

consumption Pconso(t) is introduced and fluctuates along 
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the day. The remaining available power is then: 

𝑃#(𝑡) = 𝑃𝑟𝑎𝑡𝑒𝑑 − 𝑃𝑐𝑜𝑛𝑠𝑜(𝑡) 
Within this district, electric vehicles are introduced with 

a flexible consumption and the possibility to be 

discharged. The goal of the district power management is 

therefore to respect the power limit while providing the 

best charging power for the vehicles. That is to say that 

the battery should be as charged as possible by the 

departure time of the vehicle. This objective function of 

each vehicle is named fi(Pi) with Pi the vehicle charging 

power. The future has to be anticipated because of the 

temporal coupling introduced by the batteries. Moreover 

the problem is stochastic as the vehicles are randomly 

moving. Within this case study, the non-flexible 

consumption is assumed to be perfectly forecasted and 

therefore deterministic. This assumption could be cleared 

by using a stochastic modeling, similar to the one used 

for the vehicles.  

The optimal management problem is the minimization of 

the expected total cost over a time horizon: 

min
𝑃

𝑖
𝑡0

𝐸 ( ∑ ∑ 𝑓𝑖(𝑃𝑖
𝑡)

𝑁

𝑛=1

𝑇

𝑡=𝑡0

) 

such that for all t 

∑ 𝑃𝑖
𝑡

𝑁

𝑖=1

≤ 𝑃#(𝑡) 

Resolution without information constraint 

The previous problem is a sharing problem which could 

be written as: 

min
𝑥,𝑧

𝑓(𝑥) + 𝑔(𝑧) 

𝑠. 𝑡.       𝑥 = 𝑧 
where g is the indicator function of the set C = {∑ zi ≤ 

P#}. Such a problem can then be solved in an efficient 

way using the Alternating Direction Method of 

Multipliers ADMM [4].  

𝑥𝑖
𝑘+1 ∶=  argmin

𝑥𝑖

𝑓𝑖(𝑥𝑖) +  
𝜌

2
 ‖𝑥𝑖 − 𝑧𝑖

𝑘 +  𝑢𝑖
𝑘‖

2
 

𝑧𝑘     ∶= ∏ (𝑥𝑘+1 +  𝑢𝑘)
𝐶

 

𝑢𝑘+1 ∶= 𝑢𝑘 + 𝑥𝑘+1 −  𝑧𝑘+1 

Along these iterations, each vehicle first decides its 

charging power to minimise its own individual cost plus 

a coordination term. As soon as all the vehicles decisions 

are gathered, this decision is projected on the feasible set 

C. Finally the equality constraint between x and z is 

enforced by updating the scaled dual variable u with a 

gradient descent.   

Resolution with information constraint  

On the basis of the previous resolution, the accessible 

information are reduced to two signals. The total 

consumption of the district can be measured at the 

substation level and it is therefore supposed to be 

accessible at any time. The dual variable value is the 

second signal that is necessary in the proposed resolution. 

As soon as the total consumption power is measured, it is 

possible to project it on the feasible set and to update the 

dual variable accordingly. Then this scalar value needs to 

be broadcasted to all the vehicles. This resolution 

framework meets with operational contexts where 

messages are sent to all agents at the same time [5]. The 

electrical grid itself can then be used to periodically send 

a value for instance by power line communication or 

broadband over powerline. With this limited exchange of 

information, these two values meet the operational 

feasibility and a sufficient coordination to carry out a 

resolution fulfilling the power constraint – although the 

performance cannot be as good as in the unrestricted 

case. The proposed approach consists in substituting the 

iterations of the optimisation algorithm by real power 

exchanges with frequent broadcast of the dual variable. 

First each vehicle decides its optimal charging power on 

the basis of its own objectives and of the previous dual 

variable value. The optimal power is applied right away. 

At the substation level the total power of the district is 

measured and compared to the rated power. There is no 

guarantee that the rated power is always fulfilled. If not, 

a new value for the dual variable is computed and 

broadcasted. This resolution is similar to the iterations of 

ADMM algorithm except that real power exchange 

immediately enforced are used instead of iterated 

exchanges of information until convergence. The time 

step must then be much finer than in the unrestricted 

resolution.  

OPTIMAL STRATEGY FOR A VEHICLE 

CHARGING POWER 

The distributed resolution of the fleet charging requires 

that each vehicle is able to solve the problem of its own 

optimal charging taking into account the term coming 

from the coordination at the fleet scale:  

min
𝑃𝑖

𝐸 ( ∑ 𝑓𝑖(𝑃𝑖
𝑡) +  

𝜌

2

𝑇

𝑡=𝑡0

‖𝑃𝑖
𝑡 −  𝑧𝑖

𝑘,𝑡 + 𝑢𝑖
𝑘,𝑡‖

2
) 

The resolution of this problem has to be performed very 

often as at each time step, each vehicle must solve it at 

each iteration. This calls for a resolution using Stochastic 

Dynamic Programming SDP [6]. The optimal strategy 

which will then be computed will contain the best 

decision for the charging strategy for all configuration of 

the state vector xi = (E#, SoC, τ, λ), where E# is the 

capacity of the vehicle battery, SoC is its state of charge, 

τ is the remaining duration before the vehicle departure, 

λ  gathers the 𝑧𝑖
𝑘 −  𝑢𝑖

𝑘 quantity. However, such a 

minimisation means to anticipate the future variations of 

the own vehicle – which is possible if the departure time 

is supposed to be announced by the driver – but also the 

future values of the dual variable u and of the variable z. 

These quantities depend on the future state of the fleet 

which cannot be known as vehicles travels are stochastic. 

Therefore the evolution of the λ value is considered as a 

stochastic process which is modelled by an 

autoregressive model [7].  

The objective function fi takes into account battery losses, 
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battery ageing and the vehicle mobility:  

𝑓𝑖(𝑃𝑖) ∶= ∑ (𝑓𝑙𝑜𝑠𝑠(𝑡) +  𝑓𝑎𝑔𝑒(𝑡) +  1
𝑡=𝑡𝑑𝑒𝑝

𝑖 𝑓𝑚𝑜𝑏(𝑡))

𝑇

𝑡= 𝑡0

 

where floss and fage respectively compute the losses and the 

ageing  of the battery, fmob stands for the user mobility 

cost and penalize any missing energy in the battery at the 

departure time tdep. They are computed with the following 

expressions:  

𝑃𝑙𝑜𝑠𝑠  =  𝛼𝑙𝑜𝑠𝑠  𝑃(𝑡)2 
𝑑𝑖      =  𝛼𝑎𝑔𝑒  𝐷𝑜𝐷𝛽𝑎𝑔𝑒 
𝐶𝑚𝑜𝑏 =  𝛼𝑚𝑜𝑏 (1 − 𝑆𝑜𝐶)2 

A quadratic model is used for the losses. The battery 

ageing is assessed using the depth of discharge of the 

current cycle DoD and the mobility cost is a quadratic 

function depending on the state of charge. The resolution 

by SDP consists in the resolution of the Bellman 

equation:  

𝐽𝜏=0
∗ (𝑥) =  𝑓𝑚𝑜𝑏(𝑆𝑜𝐶) 

𝐽𝜏
∗(𝑥𝜏)   =  min

𝑃𝑖

𝑓𝑙𝑜𝑠𝑠(𝑃𝑖) + 𝑓𝑎𝑔𝑒(𝑃𝑖) +  
𝜌

2
‖𝑃𝑖 −  𝜆‖

2

+ 𝐸 (𝐽𝜏−∆𝑇
∗ (𝑓𝑑𝑦𝑛(𝑥𝜏, 𝑃𝑖 ))) 

The result is then a four dimension matrix – as the state 

space has four dimensions – which describes the best 

decision on a discretised grid of the state space. Figure 1 

presents cross sectional views of this strategy depending 

on the battery state of charge and of the remaining time 

before departure, for different values of λ and a fixed 

battery capacity 𝐸# = 85𝑘𝑊ℎ. Iso-power curves are also 

plotted. The first panel – left-top – stands for the situation 

when the fleet interest needs the vehicle to discharge at 

full power, no matter what is its individual situation. 

Such a behavior is achieved using extremely negative 

values of λ so that the coordination term prevails against 

its individual objectives. Symmetrically the last panel –

 
Figure 1: Cross sectional views of the optimal strategy for the 

charging power 

right bottom – is the case where the vehicle must 

consume a power as huge as possible, in the limit of its 

rated power and current state of charge. The two 

intermediate panels represent situations where the 

coordination term and the individual costs of the vehicle 

have a similar magnitude. The vehicle charging power is 

then modulated depending on the state of charge and the 

remaining time before departure: a vehicle with a nearly 

empty battery which must leave soon will have a greater 

charging power than a vehicle with a nearly full battery 

which has a long time before departure. The coordination 

term still brings a modulation of the charging strategy so 

as to find a compromise between the individual costs and 

the global constraint.  

RESULTS AND DISCUSSION 

Non flexible consumption profile 

The case study is built on a distribution district whose 

substation has a rated power of 𝑃𝑟𝑎𝑡𝑒𝑑 = 100𝑘𝑊. The 

temporal profile of Pconso is generated from historical data 

of electricity consumption in France, freely available 

from French TSO RTE [8]. These consumption profiles 

is aggregated at a country scale and gather domestic, 

industry and services consumption, which are very 

unlikely to be observed within the same distribution 

district. Nevertheless it provides a relevant context to 

assess the adaptation capacity of the proposed resolution.  

Vehicle availability scenario 

The mobility scenario of each vehicle within the fleet is 

randomly drawn from probability densities. For the 

battery capacity, it is built on the market shares of electric 

vehicles in 2014. The distributions of arrival and 

departure hours match a fleet which arrives in the 

morning and leaves in the evening [9]. Finally the 

probability of the initial state of charge of the battery is 

deduced from the length of the last trip. These different 

values are only set from a statistical perspective and a 200 

vehicle fleet is simulated over a year. When a vehicle is 

plugged to a charging station, its state vector is supposed 

to be known.  

Temporal trajectories 

Figure 2 presents temporal trajectories of the charging 

power of the fleet during a week. On the top panel, the 

maximum power that the vehicles can consume is in red. 

In blue is the total power that is actually consumed. The 

evolution of the dual variable is presented on the middle 

panel. This dual variable can be seen as the energy price. 

It is equal to zero when the constraint is not activated. Its 

value stands for the restriction that the vehicles undergo 

on their individual objectives so as to fulfil the global 

constraint. Because of the chosen mobility scenario, this 

pressure reaches its maximum during the morning. 

Finally the last panel shows the individual charging 

trajectories of each vehicle. It can be noticed that some 

vehicles can be temporary discharged for the benefit of 

others to make the most of the fleet interest.  
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Figure 2: Trajectories of a fleet charging under a maximum 

power constraint 

Resolution with information constraint 

When information exchanges are limited, the maximum 

power constraint cannot be fulfilled at all time. Figure 3 

presents the trajectories that can be observed during a 

winter week and a summer week. In winter vehicle have 

less available power because of the greater non flexible 

consumption. The constraint is then more difficult to 

respect. Although the constraint is regularly violated, it 

can be noticed that the fleet reacts quickly to these 

violations and that the general pattern is respected. 

Moreover the violation amplitude can be significantly 

lowered by increasing the frequency of the dual variable 

update as presented in Table 1.  The frequency of the 

violation cannot be set to zero because the possibility of 

a violation is not anticipated in the presented resolution. 

But the impact on the mean amplitude is very significant.  

 

Updates 

frequency 

Violation 

frequency 

Mean violation 

amplitude  

10min 34% 9kW 

5min 20% 5kW 

1min 12% 1.5kW 

30s 10% 0.7kW 

10s 9% 0.3kW 

5s 8% 0.1kW 
Table 1: Constraint violation depending on the frequency of the 

dual variable update 

 
Figure 3: Trajectories of a fleet charging when communication 

is restricted 

CONCLUSION 

This study investigated the operational feasibility of a 

distributed optimisation algorithm for the control of an 

electric vehicle fleet. First the optimal charging of this 

fleet has been presented in order to meet a maximum 

power constraint. This distributed resolution was based 

on the Alternating Direction Method of Multipliers and 

Stochastic Dynamic Programming. As in many others 

distributed scheme, a bidirectional communication 

between each vehicle and a central agent is necessary. As 

such a communication may not be possible in a real 

application, the proposed resolution is then adapted using 

only two signals. The first one is the measure of the total 

power – which is supposed to be accessible in the district 

substation. The second one is a broadcast dual variable – 

comparable to an energy price – which is sent to all 

vehicles for instance through power line communication. 

It is shown that the constraint shape is then roughly 

respected, although some violations may occur. The 

amplitude of these constraint violations can be put as low 

as required thanks to a more frequent update of the dual 

variable. This preliminary results are very hopeful for an 

operational distributed control of flexible loads.  

 

REFERENCES 

[1] W. Kempton, J. Tomic, 2005, “Vehicle to grid power 

implementation : from stabilizing the grid to supporting 

large scale renewable energy”. Journal of Power 

Sources, vol. 144, 280-294.  

[2] M. G. Vaya, G. Andersson, 2015, “Plug-in electric 

vehicle charging approaches: centralized versus 

decentralized and strategic versus cooperative”, 

Proceedings IEEE PowerTech Eindhoven, vol .1, 1-6 

[3] R. Le Goff Latimier, B. Multon, H. Ben Ahmed, F. 

Baraer, M. Acquitter, 2015, “Stochastic optimisation of 

an electric vehicle fleet charging with uncertain 

photovoltaic production”, Proceedings IEEE ICRERA 

Palermo, vol.1, 721-726 

[4] S. Boyd, N. Parikh, B. P. E. Chu, J. Eckstein, 2010, 

“Distributed optimisation and statistical learning via the 

alternating direction method of multiplers”, Foundation 

the Trends in Machine Learning, vol. 3, 1-122 

[5] K. Christakou, D. C. Tomozei, M. Bahramipanah, 

J.Y. Le Boudec, M. Paolone, 2014, “Primary voltage 

control in active distribution networks via broadcast 

signals: the case of distributed storage”, IEEE 

Transactions on Smart Grid, vol. 5, 2314-2325 

[6] D.P. Bertsekas, 1995, “Dynamic programming and 

optimal control”, Athena Scientific, Belmont, MA.   

[7] K. Barty, P. Carpentier, P. Girardeau, 2010, 

“Decomposition of large scale stochastic optimal control 

problems”, RAIRO Operations Research, vol. 44, 167-

183 

[8] Réseau de Transport d’Electricité, 2015, Eco2mix: 

data of the 2015 year,  

http://www.rte-france.com/fr/eco2mix/eco2mix 

[9] Commissariat general du développement durable, 

2011,  “les véhicules électriques en perspective” 

 

http://www.rte-france.com/fr/eco2mix/eco2mix

