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ABSTRACT 

This paper designs a new distributed iterative bidding 

mechanism for energy trading among microgrids (MGs) 

at the local level. The market is based on one consumer 

and multiple providers. When one MG as a consumer and 

other MGs which have surplus power to supply becomes 

providers. The providers compete by iterative bidding 

cycles and the final winner will trade with the consumer 

MG. Due to the non-cooperative relationship among 

providers, players cannot access other’s information 

except the feedback from the system operator. This 

asymmetric information competition among providers is 

formulated by a Bayesian game for analysis. The 

Bayesian Nash Equilibrium (BNE) will be arrived and 

the optimal price can be provided to the consumer. The 

simulation demonstrates that although different bidding 

strategies lead to different process, the final result 

remains, illustrating the effectiveness of this trading 

model. 

I. INTRODUCTION 

The increasing demand for power brings a huge 
challenge for the traditional power grid. In this context, 
the smart grid emerges as a trend with advanced 
information and communication technology (ICT) is 
more reliable and efficient[1]. In smart grid context, the 
microgrid (MG) is regarded as a promising solution for 
integration and coordination of distributed energy 
resources at the local level. As a significant block, the 
MG has many potential advantages. In MG, local demand 
can be served by local distributed energy sources directly 
without importing the main grid. It can reduces the 
transmission loss over long distance and also minimizes 
the reliance on the main grid, efficiently relieving the 
burden of macrogrid. If the distributed energy sources in 
a MG have surplus power, they can benefit by selling it 
to other MGs. The energy trading among MGs can help 
balance energy supply and demand at the local level. 
 
 In this sense, the concept of multi-agent system can be 
adopted in the trading mechanism. The multi-agents 
which executes trading among MGs[2]. An agent-based 
MG can be considered as a consumer or a provider to 
participate in energy trading. 
 
In recent years, many studies focus on MG energy 
trading. In paper [3], the bidirectional trading mechanism 
is designed with the utilization of EVs (electric vehicles). 
Authors present collaborative and non-collaborative 
models. In paper [4], authors design a contract game, 

which provides small-scale electricity suppliers (SESs) 
and electricity consumers (ECs) a chance to participate in 
direct energy trading for revenue under asymmetric 
information. In paper [5], a distributed decision-making 
scheme is developed among MGs. The quantity depends 
on the consumer MG and the price depends on the 
provider MG. The interactions are formulated into 
Stackelberg game and the optimal trading quantity and 
price can be obtained in SE . 
 
The game theory, as a useful method, formulates energy 
trading scheme as a game model and provides solutions. 
Paper [6] investigates optimal energy trading strategy for 
individual multiple energy MGs. A two-stage stochastic 
game model was developed for MG management and 
algorithm was presented to find Nash equilibrium (NE), 
considering the risk from uncertain energy supply and 
demand. In paper [7], authors propose an event-driven 
energy trading system for MGs in a consumer-oriented 
market model, where the Stackelberg game model was 
adopted and Stackelberg equilibrium (SE) was derived as 
the desired results. Paper [8] presents a distributed energy 
trading mechanism among interconnected MGs and the 
multi-sellers-multi-buyers trading process was 
formulated as Stackelberg game to maximize the 
revenues for both sides. 
 
When one MG requests energy, it is a consumer and other 
MGs with surplus power become providers to bid for 
meeting the energy requirement. In terms of a single-
consumer-multiple-providers model, previous work 
usually focuses on distributing the required energy to all 
sellers. The design of trading mechanism only gives 
sellers one chance to bid. In this situation, sellers are 
likely to provide high bidding price due to unknown 
information about competitors to fail in trading.   
 
This paper presents a new iterative bidding scheme for 
local energy trading between agent-based MGs. The 
trading model consists of one buyer and multiple 
providers. The mechanism presents multiple rounds of 
bidding cycles to achieve optimum. When sellers send 
their bidding prices to the operator, they will receive the 
feedback from the operator so that they have 
opportunities to change their bidding strategies and 
update bidding price in next round. The chance of price 
adjustment aims to make the trading results closer to 
optimal. The non-cooperative sellers could obtain some 
information about competitors by receiving feedback to 
play game better and the distributed auction leads to 
vigorous competition in sellers which will benefit buyers 
with lower prices. The method is mathematically 
illustrated and the effectiveness has been validated by the 
case study. 
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II. LOCAL ENERGY TRADING MODEL 

An energy trading mechanism which supports multiple 
rounds of bidding cycles is proposed in this section. The 
MGs are considered as consumer or provider, depending 
on their energy demand and generation. When a MG has 
energy deficiency, it becomes a consumer and other MGs 
which have surplus energy to supply this deficiency are 
providers. Once a consumer asks for energy, the biding 
game starts. The system operator is acted as the game 
organizer, who arranges qualified providers to bid for the 
auction and chooses the best trading for consumer MG. 

A. Consumer model 

For consumer MG, there is a deficiency in energy, 

denoted by Ereq . In order to compensate this shortage, it 

has to buy quantity Ereq from other MGs at price (P) or 

generates this part by itself. The objective is to minimize 

the total cost of compensation as follows: 

     ÍÉÎὅ   
Ὁ Ͻὖ  ȟ     ὭὪ ὖ ὖ     

Ὁ Ͻὖ   ȟ ὭὪ ὖ ὖ  
       ρ 

where , C represents the total cost of the compensation. 

Pgen denotes the cost of generation, which is a constant. 

B. Provider model 

For provider MGs, they have abundant energy, denoted 

by Ea. Besides the supply for their own demand Edemand, 

the surplus energy, denoted by Eextra, can be sold to the 

consumer, Ereq at price P. Then the seller model is 

              Ὁ Ὁ Ὁ                                  ς 

                ÍÁØὙ Ὁ Ͻὖ                                          σ 

s.t.   Eextra > Ereq,  P > Pcost 

where, Pcost is the unit generation cost in the MG, which 

also decides the minimum bidding price limitation for 

provider. All selling prices of MGs have to be higher than 

Pcost to assure it is profitable. 

III. ENERGY TRADING PROCESS 

This trading is based on single consumer and multiple 

providers among agent-based MGs, where each MG has 

agent to access information and participate in the trading. 

  
Figure 1 sequence diagram of the proposed trading system 

The process of the local energy trading is illustrated in 

Figure 1. As shown, when one MG has a power 

deficiency, it can send a request for energy Ereq and Pgen 

for price to the operator. The system operator informs all 

rest of MGs the quantity of demand. According to Ereq, 

other MGs will check their energy surplus to identify 

whether they can sell. The qualified providers send their 

bidding price to the operator. Then, the operator finds the 

minimum bidding price and reveals it to all providers. 

Accordingly, providers can update their bidding prices.  

This process is repeated for a few cycles. If a provider 

bids the same price twice, this price becomes its final 

bidding price. When all providers have their final bidding 

prices, the process stops and the provider with minimum 

price is the winner. When this price is lower than Pgen 

generation cost in consumer, the energy trading will be 

executed, otherwise the trading fails. 

 

This trading scheme focuses on the distributed iterative 

bidding among providers. After submitting their bidding 

prices, providers will receive a feedback on minimum 

price in this round from the operator. As a reference, they 

can reduce their prices to make them more competitive in 

next bidding cycle. In terms of providers with the 

minimum bidding price, they may slow down the 

reduction interval to see whether others have the lower 

prices or their price is low enough to win the bidding. In 

addition, they have to make sure that their bidding prices 

can generate profits for them, not lower than the 

minimum value. They will choose their strategy to try to 

win the bidding with a higher price as they can. 

 

IV. BAYESIAN GAME THEORY 

ANALYSIS 

A. Bayesian game formulation 

For buyer MG, a lower bidding price is preferred but 

from the perspective of sellers, a high power price is 

better. However, higher price has less competitiveness in 

the bidding. According to the non-cooperation 

relationship among sellers, they do not know others’ 

information except the minimum price feedback in each 

cycle from the system operator. There is a competition 

with incomplete information in sellers.  

 

The Bayesian Game is an appropriate framework for 

modelling this distributed iterative bidding. The sellers 

are modelled as a set of players with different bidding 

strategies and payoff functions. The Bayesian Nash 

equilibrium (BNE) is the desired outcome corresponding 

to the optimal price.  

ὖᶻ ÁÒÇÍÉÎὅὉ ȟὖ               τ 

The system operator performs as a central controller to 

organize the trading. A distributed algorithm is designed 

to execute the proposed scheme to find the BNE through 

iterative bidding cycles. 
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Algorithm 1 

1: The consumer sets the energy Ereq and limitation Pgen for final 

bidding price. 

2: The k providers initializes bidding price P= {P1, P2, P3,..., Pk} 
, where the cost of compensation for consumer is C(Ereq,P) 

ὅ Ὁ Ͻὖ 

Meanwhile, providers can also set their minimum bidding 
price minP= {Pmin

1, Pmin
2, Pmin

3,…, Pmin
k} and their bidding 

price reduction interval ∆P={∆P1, ∆ P2, ∆ P3,…, ∆ Pk} , and 

keep it to themselves. 
3: For iteration i ŕ i+1, do 

4:  In responding to bidding price Pi provided by sellers, the 
system operator informs them the lowest price Pmin at this 

round, where 

ὖ ὥὶὫάὭὲὅὉ ȟὖ  

5:  The sellers update Pi+1 based on step size ∆P which they 
set at beginning according to their bidding strategy. 

ὖ ὖ Ўὖ 
The sellers present their updated bidding price Pi+1 to 
system in this new bidding cycle. 

6:  If Px
i+1=Px

i  for provider x, where 1Ů x Ů k, then  

  This bidding price Px
i becomes its final bidding price 

which can’t be changed anymore. 
7:  End if 

8:  In responding to Pi+1, the system operator informs them 

the new lowest price Pmin at this round, where  

ὖ ÍÉÎὖ  
9: End for 

10: Repeat 3 to 9 until the termination condition is satisfied that 

all providers arrive at their final bidding price. 

11: The final minimum bidding price Pmin is obtained. 

12: If Pmin<Pgen, then 

 The transaction is concluded. The consumer will buy Ereq 

power at price Pmin from bidding winner. 
Otherwise, the transaction fails. The consumer has to 

produce Ereq with unit production cost Pgen by itself. 

13: End if  

 

 

B. A distributed algorithm for obtaining 

BNE 

The core of the scheme is the bidding price variation in 

iterative cycles. Sellers have their own strategies to 

change ∆P and update price Pi+1. In Algorithm 1, the 

reduction intervals are fixed in two types: 1) when the 

feedback value Pmin proposed by other sellers, it will 

reduce by ∆P based on Pmin to improve competitiveness. 

2) when its price is the minimum in last round, it can just 

slightly change in the next turn. The aim is to retain the 

right of price adjustment in case of lower price and keep 

a higher price as possible if there are no competitors. 

 

The BNE can be obtained when all sellers arrive at their 

final bidding prices. In comparison, the optimal price is 

the lowest. As long as it is below the buyer price bar, the 

transaction between the consumer MG and provider MG 

will be executed with the quantity Ereq at price Pmin. 

V. CASE STUDY 

In this section, the simulation case study is implemented 

to illustrate the proposed trading approach in several 

MGs (i.e., one consumer and multiple providers). It is 

assumed that the buyer has a deficient energy of 10MWh, 

and its production cost is £41/MWh. There are 5 sellers 

in this energy bidding, named S1 to S5. Their minimum 

bidding prices and initialized bidding prices are in Table 

1. 

 
Table 1 sellers' parameters 

sellers S1 S2 S3 S4 S5 

(£/MWh) 

Min bidding 

price 
39 42 34 45 35 

Initialization 45 48 43 50 43 

 

There are two cases in the simulation according to the 

different normal price reduction intervals, low level and 

high level. In addition, if the find that Pmin is proposed by 

themselves in last round, their reduction in next round 

will change to £0.1/MWh. 

A. Low level of bidding price reduction  

With different bidding strategies, sellers’ normal price 

reduction intervals are displayed in Table 2. 

 
Table 2 low level reduction interval for sellers 
sellers S1 S2 S3 S4 S5 

 ∆P (£/MWh) 0.5 0.3 0.4 0.2 0.6 

 

With the parameters shown, the algorithm is 

implemented in the transaction. The sellers’ bidding price 

variations over all cycles are displayed in Figure 2.  As 

shown, their bidding prices have the familiar tend, 

gradually falling to their price bars. The BNE is arrived 

at the 20th bidding cycle, where five sellers all arrive at 

their final bidding prices. At the end of this bidding, the 

final winner bidding price is £34.4 /MWh from S3, which 

is much lower than the buyer’s production cost 

£42/MWh. The transaction is concluded and the buyer’s 

cost cannot be further reduced. 

 

It can be seen from Figure 2 that there are sharp decreases 

in the second round. At the beginning, according to their 

own cases, the initial bidding prices have some 

differences. After the first feedback, from the second 

cycle, all reductions are based on the same values, i.e. the 

last minimum price Pmin. Figure 3 shows the minimum 

bidding price Pmin gradually converges to BNE, around 

£34/MWh. It proves that this distributed iterative bidding 

scheme works and the BNE can be achieved. 

 

 
Figure 2 bidding price variation with low reduction interval 
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Figure 3 minimum bidding price variation in low reduction 

interval 

B. High level of bidding price reduction 

In this section it the sellers’ normal price reduction 

intervals are displayed in Table 3. 

 
Table 3high level reduction interval for sellers 

sellers S1 S2 S3 S4 S5 

 ∆P (£/MWh) 0.5 0.3 0.4 0.2 0.6 

 

Figure 4 displays that the sellers bidding prices in 

iterations. As shown, the variation is similar to that with 

low-level reduction in Figure 2. However, it is fast to 

reach the BNE in the 9th iteration bidding. The final 

winner is still S3 with bidding price £34/MWh. In Figure 

5, under the high-level reduction bidding, Pmin gradually 

falls down to the £34/MWh, which is similar to that in 

the low-level case. 

 

 
Figure 4 bidding price variation with high reduction interval 

 
Figure 5 minimum bidding price variation in high reduction 

interval 

 

According to Figures 2 and 4, although there are different 

number of bidding cycles to achieve final transaction, the 

bidding price variations of five sellers are similar. With 

the increasing bidding cycles and the growing fierce 

competition, S4, S2 and S1 reached their final price in 

succession. Then S3 and S5 continue to compete to their 

limitations. It illustrates that the final bidding winner 

mainly depends on the minimum price they can provide, 

rather than the reduction interval in bidding strategy. 

 

In Figure 3 and Figure 5, they show that the bidding price 

gradually falls during the growth of bidding iteration. It 

demonstrates the advantage of this iterative bidding 

scheme that fierce competition leads to lower bidding 

price to benefit the buyer. No matter the higher or lower 

reduction level sellers choose, the minimum bidding 

price smoothly decreases to the final result. 

VI. CONCLUSION 

This paper proposes a novel distributed energy trading 

for a single-consumer-multiple-providers model to select 

the optimal trading target for consumer MG. The system 

is composed of agent-based microgrids, where each agent 

can represent MG to participate energy transaction. The 

competition process among providers is formulated as a 

Bayesian game. The unique Bayesian Nash Equilibrium 

can be obtained by the presented method. With this 

desired result, the consumer will trade with the winner 

provider at the optimal price. 
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